ﻻ يوجد ملخص باللغة العربية
The goal of the article is to better understand cosupport in triangulated categories since it is still quite mysterious. We study boundedness of local cohomology and local homology functors using Koszul objects, give some characterizations of cosupport and get some results that, in special cases, recover and generalize the known results about the usual cosupport. Also we include some computations of cosupport, settle the comparison of support and cosupport of cohomologically finite objects. Finally, we assign to any object of the category a subset of $mathrm{Spec}R$, called the big cosupport.
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, f
Given a suitable stable monoidal model category $mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ splice
We study the problem of when triangulated categories admit unique infinity-categorical enhancements. Our results use Luries theory of prestable infinity-categories to give conceptual proofs of, and in many cases strengthen, previous work on the subje
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful. Recently, a modified version of this was introduced in triangulated categor
Let $mathcal{C}$ be a triangulated category. We first introduce the notion of balanced pairs in $mathcal{C}$, and then establish the bijective correspondence between balanced pairs and proper classes $xi$ with enough $xi$-projectives and enough $xi$-