We explore the link between the chiral symmetry of QCD and the numerical results of the light-front quark model, analyzing both the two-point and three-point functions of the pion. Including the axial-vector coupling as well as the pseudoscalar coupling in the light-front quark model, we discuss the implication of the chiral anomaly in describing the pion decay constant, the pion-photon transition form factor and the electromagnetic form factor of the pion. In constraining the model parameters, we find that the chiral anomaly plays a critical role and the analysis of $F_{pigamma}(Q^2)$ in timelike region is important. Our results indicate that the constituent quark picture is effective for the low and high $Q^2$ ranges implementing the quark mass evolution effect as $Q^2$ grows.