System Outage Probability of PS-SWIPT Enabled Two-Way AF Relaying with Hardware Impairments


الملخص بالإنكليزية

In this paper, we investigate the system outage probability of a simultaneous wireless information and power transfer (SWIPT) based two-way amplify-and-forward (AF) relay network considering transceiver hardware impairments (HIs), where the energy-constrained relay node processes the received signals based on a power splitting protocol and the two terminals employ a selection combining (SC) scheme to exploit the signals from the direct and relaying links. Assuming independent but non-identically distributed Nakagami-m fading channels, we derive the system outage probability in a closed-form, which enables us to identify two crucial ceiling effects on the system outage probability caused by HIs in the high data rate regions, i.e., relay cooperation ceiling (RCC) and overall system ceiling (OSC). Specifically, the RCC prevents the relaying link from participating in cooperative communications, while the OSC leaves the overall system in outage. Furthermore, we derive the achievable diversity gain of the considered network, which shows that the diversity gain equals either the shape parameter of the direct link or zero. Computer simulations are provided to validate the correctness of our analytical results, and study the effects of various system parameters on the system outage performance and the optimal power splitting ratio, as well as the energy efficiency.

تحميل البحث