ﻻ يوجد ملخص باللغة العربية
We present mathematical methods, based on convex optimization, for correcting non-physical coherency matrices measured in polarimetry. We also develop the method for recovering the coherency matrices corresponding to the smallest and largest values of the degree of polarization given the experimental data and a specified tolerance. We use experimental non-physical results obtained with the standard polarimetry scheme and a commercial polarimeter to illustrate these methods. Our techniques are applied in post-processing, which complements other experimental methods for robust polarimetry.
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probab
We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization
We present novel convex-optimization-based solutions to the problem of blind beamforming of constant modulus signals, and to the related problem of linearly constrained blind beamforming of constant modulus signals. These solutions ensure global opti
This paper presents a convex sufficient condition for solving a system of nonlinear equations under parametric changes and proposes a sequential convex optimization method for solving robust optimization problems with nonlinear equality constraints.
We consider online convex optimization when a number k of data points are outliers that may be corrupted. We model this by introducing the notion of robust regret, which measures the regret only on rounds that are not outliers. The aim for the learne