ﻻ يوجد ملخص باللغة العربية
Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each nodes latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy---defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo---that leverages the posterior distributions functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the co
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarit
We discuss an efficient implementation of the iterative proportional scaling procedure in the multivariate Gaussian graphical models. We show that the computational cost can be reduced by localization of the update procedure in each iterative step by