ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization

94   0   0.0 ( 0 )
 نشر من قبل Shijing Si
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Control variates are a well-established tool to reduce the variance of Monte Carlo estimators. However, for large-scale problems including high-dimensional and large-sample settings, their advantages can be outweighed by a substantial computational cost. This paper considers control variates based on Stein operators, presenting a framework that encompasses and generalizes existing approaches that use polynomials, kernels and neural networks. A learning strategy based on minimising a variational objective through stochastic optimization is proposed, leading to scalable and effective control variates. Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.



قيم البحث

اقرأ أيضاً

320 - Hao Liu , Yihao Feng , Yi Mao 2017
Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency duri ng training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Steins identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches.
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC. These methods use a noisy estimate of the gradient of the log posterior, whic h reduces the per iteration computational cost of the algorithm. Despite this, there are a number of results suggesting that stochastic gradient Langevin dynamics (SGLD), probably the most popular of these methods, still has computational cost proportional to the dataset size. We suggest an alternative log posterior gradient estimate for stochastic gradient MCMC, which uses control variates to reduce the variance. We analyse SGLD using this gradient estimate, and show that, under log-concavity assumptions on the target distribution, the computational cost required for a given level of accuracy is independent of the dataset size. Next we show that a different control variate technique, known as zero variance control variates can be applied to SGMCMC algorithms for free. This post-processing step improves the inference of the algorithm by reducing the variance of the MCMC output. Zero variance control variates rely on the gradient of the log posterior; we explore how the variance reduction is affected by replacing this with the noisy gradient estimate calculated by SGMCMC.
Variational Monte Carlo (VMC) is an approach for computing ground-state wavefunctions that has recently become more powerful due to the introduction of neural network-based wavefunction parametrizations. However, efficiently training neural wavefunct ions to converge to an energy minimum remains a difficult problem. In this work, we analyze optimization and sampling methods used in VMC and introduce alterations to improve their performance. First, based on theoretical convergence analysis in a noiseless setting, we motivate a new optimizer that we call the Rayleigh-Gauss-Newton method, which can improve upon gradient descent and natural gradient descent to achieve superlinear convergence with little added computational cost. Second, in order to realize this favorable comparison in the presence of stochastic noise, we analyze the effect of sampling error on VMC parameter updates and experimentally demonstrate that it can be reduced by the parallel tempering method. In particular, we demonstrate that RGN can be made robust to energy spikes that occur when new regions of configuration space become available to the sampler over the course of optimization. Finally, putting theory into practice, we apply our enhanced optimization and sampling methods to the transverse-field Ising and XXZ models on large lattices, yielding ground-state energy estimates with remarkably high accuracy after just 200-500 parameter updates.
Deep Gaussian Processes (DGPs) are hierarchical generalizations of Gaussian Processes that combine well calibrated uncertainty estimates with the high flexibility of multilayer models. One of the biggest challenges with these models is that exact inf erence is intractable. The current state-of-the-art inference method, Variational Inference (VI), employs a Gaussian approximation to the posterior distribution. This can be a potentially poor unimodal approximation of the generally multimodal posterior. In this work, we provide evidence for the non-Gaussian nature of the posterior and we apply the Stochastic Gradient Hamiltonian Monte Carlo method to generate samples. To efficiently optimize the hyperparameters, we introduce the Moving Window MCEM algorithm. This results in significantly better predictions at a lower computational cost than its VI counterpart. Thus our method establishes a new state-of-the-art for inference in DGPs.
This paper proposes SplitSGD, a new dynamic learning rate schedule for stochastic optimization. This method decreases the learning rate for better adaptation to the local geometry of the objective function whenever a stationary phase is detected, tha t is, the iterates are likely to bounce at around a vicinity of a local minimum. The detection is performed by splitting the single thread into two and using the inner product of the gradients from the two threads as a measure of stationarity. Owing to this simple yet provably valid stationarity detection, SplitSGD is easy-to-implement and essentially does not incur additional computational cost than standard SGD. Through a series of extensive experiments, we show that this method is appropriate for both convex problems and training (non-convex) neural networks, with performance compared favorably to other stochastic optimization methods. Importantly, this method is observed to be very robust with a set of default parameters for a wide range of problems and, moreover, yields better generalization performance than other adaptive gradient methods such as Adam.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا