ﻻ يوجد ملخص باللغة العربية
We examine the mode entanglement and correlation of two fermionic particles. We study the one- and two-mode entropy and a global characteristic, the one-body entanglement entropy. We consider not only angular momentum coupled states with single configuration but use the configuration interaction method. With the help of the Slater decomposition, we derive analytical expressions for the entanglement measures. We show that when the total angular momentum is zero specific single configurations describe maximally entangled states. It turns out that for a finite number of associated modes the one- and two-mode entropies have identical values. In the shell model framework, we numerically study two valence neutrons in the $sd$ shell. The one-body entanglement entropy of the ground state is close to the maximal value and the associated modes have the largest mutual information.
We discuss renormalization group approaches to strongly interacting Fermi systems, in the context of Landaus theory of Fermi liquids and functional methods, and their application to neutron matter.
We study some general properties of coupled quantum systems. We consider simple interactions between two copies of identical Hamiltonians such as the SYK model, Pauli spin chains with random magnetic field and harmonic oscillators. Such couplings mak
Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large val
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron or helion, in fact, of any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (i.e. electric fields leading to the case of i