ﻻ يوجد ملخص باللغة العربية
High spin states of neutron deficient Trans-Lead nucleus $^{204}$At were populated up to $E_x sim 8,{rm MeV}$ through the $^{12}$C + $^{197}$Au fusion evaporation reaction. Decay of the high spin states including prompt and delayed gamma ray emission were studied to understand the underlying nuclear structure. The level scheme, which was partly known from earlier studies, was extended further through our experiment and analysis of spin and parity of the associated levels. An isomeric $16^+$ level $(tau=52(5), {rm ns})$, corresponding to $M2$ transition, was established from our measurements. Attempts were made at interpretation of the excited states based on multi quasiparticle and hole structure involving $2f_{5/2}$, $1h_{9/2}$, and $1i_{13/2}$ shell model states, along with moderate core excitation. Magnetic dipole band structure over the spin parity range:~$16^+ - 23^+$, which was found in the earlier Gammasphere study, was confirmed and explored in more detail, including the missing cross-over $E2$ transitions. Band-crossing along the shears band was observed and compared with the evidence of similar phenomena in the neighboring neutron deficient $^{202}$Bi, $^{205}$Rn isotones and the neighbouring $^{203}$At isotope. Based on comparison of the measured $B(M1)/B(E2)$ values for transitions along the band with the semiclassical model based estimates, the shears band of $^{204}$At was firmly established along with the level scheme.
The isomeric and {beta} decays of the N = Z +2 nucleus 96Ag were investigated at NSCL. A cascade of {gamma}-ray transitions originating from the de-excitation of a {mu}s isomer was observed for the first time and was found in coincidence with two pre
Neutron deficient isotopes of Francium (Z=87, N=121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197Au(16O,xn)[213-x]Fr at 100 MeV. The gamma-rays from the residues were observed through the high sensitivity Germanium Clov
The discovery of naturally occurring long-lived isomeric states (t_1/2 > 10^8 yr) in the neutron-deficient isotopes 211,213,217,218Th [A. Marinov et al., Phys. Rev. C 76, 021303(R) (2007)] was reexamined using accelerator mass spectrometry (AMS). Bec
Decay spectroscopy of the odd-proton nuclei $^{249}$Md and $^{251}$Md has been performed. High-$K$ isomeric states were identified for the first time in these two nuclei through their electromagnetic decay. An isomeric state with a half-life of $2.4(
Neutron-rich nuclei were populated in a relativistic fission of 238U. Gamma-rays with energies of 135 keV and 184 keV were associated with two isomeric states in 121Pd and 117Ru. Half-lives of 0.63(5) microseconds and 2.0(3) micrisecondss were deduce