ﻻ يوجد ملخص باللغة العربية
We study a continuous data assimilation (CDA) algorithm for a velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases: nudging applied to the velocity and vorticity, and nudging applied to the velocity only. We prove that under a typical finite element spatial discretization and backward Euler temporal discretization, application of CDA preserves the unconditional long-time stability property of the velocity-vorticity method and provides optimal long-time accuracy. These properties hold if nudging is applied only to the velocity, and if nudging is also applied to the vorticity then the optimal long-time accuracy is achieved more rapidly in time. Numerical tests illustrate the theory, and show its effectiveness on an application problem of channel flow past a flat plate.
We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulat
We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pressure. The unique solvability of the continuous problem is a
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically
A variational formulation is introduced for the Oseen equations written in terms of vor-ti-city and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element