ﻻ يوجد ملخص باللغة العربية
In this paper we propose statistical inference tools for the covariance operators of functional time series in the two sample and change point problem. In contrast to most of the literature the focus of our approach is not testing the null hypothesis of exact equality of the covariance operators. Instead we propose to formulate the null hypotheses in them form that the distance between the operators is small, where we measure deviations by the sup-norm. We provide powerful bootstrap tests for these type of hypotheses, investigate their asymptotic properties and study their finite sample properties by means of a simulation study.
For testing hypothesis on the covariance operator of functional time series, we suggest to use the full functional information and to avoid dimension reduction techniques. The limit distribution follows from the central limit theorem of the weak conv
In the Gaussian white noise model, we study the estimation of an unknown multidimensional function $f$ in the uniform norm by using kernel methods. The performances of procedures are measured by using the maxiset point of view: we determine the set o
The problem of constructing a simultaneous confidence band for the mean function of a locally stationary functional time series $ { X_{i,n} (t) }_{i = 1, ldots, n}$ is challenging as these bands can not be built on classical limit theory. On the one
Let $X$ be a centered Gaussian random variable in a separable Hilbert space ${mathbb H}$ with covariance operator $Sigma.$ We study a problem of estimation of a smooth functional of $Sigma$ based on a sample $X_1,dots ,X_n$ of $n$ independent observa
Prediction for high dimensional time series is a challenging task due to the curse of dimensionality problem. Classical parametric models like ARIMA or VAR require strong modeling assumptions and time stationarity and are often overparametrized. This