ﻻ يوجد ملخص باللغة العربية
We compute the Brown measure of $x_{0}+isigma_{t}$, where $sigma_{t}$ is a free semicircular Brownian motion and $x_{0}$ is a freely independent self-adjoint element. The Brown measure is supported in the closure of a certain bounded region $Omega_{t}$ in the plane. In $Omega_{t},$ the Brown measure is absolutely continuous with respect to Lebesgue measure, with a density that is constant in the vertical direction. Our results refine and rigorize results of Janik, Nowak, Papp, Wambach, and Zahed and of Jarosz and Nowak in the physics literature. We also show that pushing forward the Brown measure of $x_{0}+isigma_{t}$ by a certain map $Q_{t}:Omega_{t}rightarrowmathbb{R}$ gives the distribution of $x_{0}+sigma_{t}.$ We also establish a similar result relating the Brown measure of $x_{0}+isigma_{t}$ to the Brown measure of $x_{0}+c_{t}$, where $c_{t}$ is the free circular Brownian motion.
We compute the Brown measure of the sum of a self-adjoint element and an elliptic element. We prove that the push-forward of this Brown measure of a natural map is the law of the free convolution of the self-adjoint element and the semicircle law; it
We consider a family of free multiplicative Brownian motions $b_{s,tau}$ parametrized by a positive real number $s$ and a nonzero complex number $tau$ satisfying $leftvert tau-srightvert leq s,$ with an arbitrary unitary initial condition. We compute
Let $x_0$ be a possibly-unbounded self-adjoint random variable, $tildesigma_alpha$ and $sigma_beta$ are semicircular variables with variances $alphageq 0$ and $beta>0$ respectively (when $alpha = 0$, $tildesigma_alpha = 0$). Suppose $x_0$, $sigma_alp
The free multiplicative Brownian motion $b_{t}$ is the large-$N$ limit of the Brownian motion on $mathsf{GL}(N;mathbb{C}),$ in the sense of $ast $-distributions. The natural candidate for the large-$N$ limit of the empirical distribution of eigenvalu
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many r