ﻻ يوجد ملخص باللغة العربية
Let $Sigma$ a closed $n$-dimensional manifold, $mathcal{N} subset mathbb{R}^M$ be a closed manifold, and $u in W^{s,frac ns}(Sigma,mathcal{N})$ for $sin(0,1)$. We extend the monumental work of Sacks and Uhlenbeck by proving that if $pi_n(mathcal{N})={0}$ then there exists a minimizing $W^{s,frac ns}$-harmonic map homotopic to $u$. If $pi_n(mathcal{N}) eq {0}$, then we prove that there exists a $W^{s,frac{n}{s}}$-harmonic map from $mathbb{S}^n$ to $mathcal{N}$ in a generating set of $pi_{n}(mathcal{N})$. Since several techniques, especially Pohozaev-type arguments, are unknown in the fractional framework (in particular when $frac{n}{s} eq 2$ one cannot argue via an extension method), we develop crucial new tools that are interesting on their own: such as a removability result for point-singularities and a balanced energy estimate for non-scaling invariant energies. Moreover, we prove the regularity theory for minimizing $W^{s,frac{n}{s}}$-maps into manifolds.
We consider the energy-critical half-wave maps equation $$partial_t mathbf{u} + mathbf{u} wedge | abla| mathbf{u} = 0$$ for $mathbf{u} : [0,T) times mathbb{R} to mathbb{S}^2$. We give a complete classification of all traveling solitary waves with fin
We construct a model of differential K-theory, using the geometrically defined Chern forms, whose cocycles are certain equivalence classes of maps into the Grassmannians and unitary groups. In particular, we produce the circle-integration maps for th
We consider half-harmonic maps from $mathbb{R}$ (or $mathbb{S}$) to $mathbb{S}$. We prove that all (finite energy) half-harmonic maps are non-degenerate. In other words, they are integrable critical points of the energy functional. A full description
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic