ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal $W^{s,frac{n}{s}}$-harmonic maps in homotopy classes

45   0   0.0 ( 0 )
 نشر من قبل Armin Schikorra
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Sigma$ a closed $n$-dimensional manifold, $mathcal{N} subset mathbb{R}^M$ be a closed manifold, and $u in W^{s,frac ns}(Sigma,mathcal{N})$ for $sin(0,1)$. We extend the monumental work of Sacks and Uhlenbeck by proving that if $pi_n(mathcal{N})={0}$ then there exists a minimizing $W^{s,frac ns}$-harmonic map homotopic to $u$. If $pi_n(mathcal{N}) eq {0}$, then we prove that there exists a $W^{s,frac{n}{s}}$-harmonic map from $mathbb{S}^n$ to $mathcal{N}$ in a generating set of $pi_{n}(mathcal{N})$. Since several techniques, especially Pohozaev-type arguments, are unknown in the fractional framework (in particular when $frac{n}{s} eq 2$ one cannot argue via an extension method), we develop crucial new tools that are interesting on their own: such as a removability result for point-singularities and a balanced energy estimate for non-scaling invariant energies. Moreover, we prove the regularity theory for minimizing $W^{s,frac{n}{s}}$-maps into manifolds.



قيم البحث

اقرأ أيضاً

We consider the energy-critical half-wave maps equation $$partial_t mathbf{u} + mathbf{u} wedge | abla| mathbf{u} = 0$$ for $mathbf{u} : [0,T) times mathbb{R} to mathbb{S}^2$. We give a complete classification of all traveling solitary waves with fin ite energy. The proof is based on a geometric characterization of these solutions as minimal surfaces with (not necessarily free) boundary on $mathbb{S}^2$. In particular, we discover an explicit Lorentz boost symmetry, which is implemented by the conformal Mobius group on the target $mathbb{S}^2$ applied to half-harmonic maps from $mathbb{R}$ to $mathbb{S}^2$. Complementing our classification result, we carry out a detailed analysis of the linearized operator $L$ around half-harmonic maps $mathbf{Q}$ with arbitrary degree $m geq 1$. Here we explicitly determine the nullspace including the zero-energy resonances; in particular, we prove the nondegeneracy of $mathbf{Q}$. Moreover, we give a full description of the spectrum of $L$ by finding all its $L^2$-eigenvalues and proving their simplicity. Furthermore, we prove a coercivity estimate for $L$ and we rule out embedded eigenvalues inside the essential spectrum. Our spectral analysis is based on a reformulation in terms of certain Jacobi operators (tridiagonal infinite matrices) obtained from a conformal transformation of the spectral problem posed on $mathbb{R}$ to the unit circle $mathbb{S}$. Finally, we construct a unitary map which can be seen as a gauge transform tailored for a future stability and blowup analysis close to half-harmonic maps. Our spectral results also have potential applications to the half-harmonic map heat flow, which is the parabolic counterpart of the half-wave maps equation.
We construct a model of differential K-theory, using the geometrically defined Chern forms, whose cocycles are certain equivalence classes of maps into the Grassmannians and unitary groups. In particular, we produce the circle-integration maps for th ese models using classical homotopy-theoretic constructions, by incorporating certain differential forms which reconcile the incompatibility between these even and odd Chern forms. By the uniqueness theorem of Bunke and Schick, this model agrees with the spectrum-based models in the literature whose abstract Chern cocycles are compatible with the delooping maps on the nose.
117 - Bin Deng , Liming Sun , 2021
We consider half-harmonic maps from $mathbb{R}$ (or $mathbb{S}$) to $mathbb{S}$. We prove that all (finite energy) half-harmonic maps are non-degenerate. In other words, they are integrable critical points of the energy functional. A full description of the kernel of the linearized operator around each half-harmonic map is given. The second part of this paper devotes to studying the quantitative stability of half-harmonic maps. When its degree is $pm 1$, we prove that the deviation of any map $boldsymbol{u}:mathbb{R}to mathbb{S}$ from Mobius transformations can be controlled uniformly by $|boldsymbol{u}|_{dot H^{1/2}(mathbb{R})}^2-deg boldsymbol{u}$. This result resembles the quantitative rigidity estimate of degree $pm 1$ harmonic maps $mathbb{R}^2to mathbb{S}^2$ which is proved recently. Furthermore, we address the quantitative stability for half-harmonic maps of higher degree. We prove that if $boldsymbol{u}$ is already near to a Blaschke product, then the deviation of $boldsymbol{u}$ to Blaschke products can be controlled by $|boldsymbol{u}|_{dot H^{1/2}(mathbb{R})}^2-deg boldsymbol{u}$. Additionally, a striking example is given to show that such quantitative estimate can not be true uniformly for all $boldsymbol{u}$ of degree 2. We conjecture similar things happen for harmonic maps ${mathbb R}^2to {mathbb S}^2$.
73 - Daniel Stern 2019
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M $ of $M$ to the average Euler characteristic of the level sets $Sigma_{theta}=u^{-1}{theta}$. As our primary application, we extend the Kronheimer--Mrowka characterization of the Thurston norm on $H_2(M;mathbb{Z})$ in terms of $|R_M^-|_{L^2}$ and the harmonic norm to any closed $3$--manifold containing no nonseparating spheres. Additional corollaries include the Bray--Brendle--Neves rigidity theorem for the systolic inequality $(min R_M)sys_2(M)leq 8pi$, and the well--known result of Schoen and Yau that $T^3$ admits no metric of positive scalar curvature.
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic , robust, and constructive approach to the stability analysis of self-similar blowup in parabolic evolution equations. In particular, we completely avoid using delicate Lyapunov functionals, monotonicity formulas, indirect arguments, or fragile parabolic structure like the maximum principle. As a matter of fact, our approach reduces the nonlinear stability analysis of self-similar shrinkers to the spectral analysis of the associated self-adjoint linearized operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا