ﻻ يوجد ملخص باللغة العربية
In convolutional neural networks, the linear transformation of multi-channel two-dimensional convolutional layers with linear convolution is a block matrix with doubly Toeplitz blocks. Although a wrapping around operation can transform linear convolution to a circular one, by which the singular values can be approximated with reduced computational complexity by those of a block matrix with doubly circulant blocks, the accuracy of such an approximation is not guaranteed. In this paper, we propose to inspect such a linear transformation matrix through its asymptotic spectral representation - the spectral density matrix - by which we develop a simple singular value approximation method with improved accuracy over the circular approximation, as well as upper bounds for spectral norm with reduced computational complexity. Compared with the circular approximation, we obtain moderate improvement with a subtle adjustment of the singular value distribution. We also demonstrate that the spectral norm upper bounds are effective spectral regularizers for improving generalization performance in ResNets.
Recent work has highlighted several advantages of enforcing orthogonality in the weight layers of deep networks, such as maintaining the stability of activations, preserving gradient norms, and enhancing adversarial robustness by enforcing low Lipsch
Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including fact
Proposed in 1991, Least Mean Square Error Reconstruction for self-organizing network, shortly Lmser, was a further development of the traditional auto-encoder (AE) by folding the architecture with respect to the central coding layer and thus leading
We show how fitting sparse linear models over learned deep feature representations can lead to more debuggable neural networks. These networks remain highly accurate while also being more amenable to human interpretation, as we demonstrate quantiativ
We study the family of functions that are represented by a linear convolutional neural network (LCN). These functions form a semi-algebraic subset of the set of linear maps from input space to output space. In contrast, the families of functions repr