ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse Ionized Gas in Simulations of Multiphase, Star-Forming Galactic Disks

135   0   0.0 ( 0 )
 نشر من قبل Erin Kado-Fong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been hypothesized that photons from young, massive star clusters are responsible for maintaining the ionization of diffuse warm ionized gas seen in both the Milky Way and other disk galaxies. For a theoretical investigation of the warm ionized medium (WIM), it is crucial to solve radiation transfer equations where the ISM and clusters are modeled self-consistently. To this end, we employ a Solar neighborhood model of TIGRESS, a magnetohydrodynamic simulation of the multiphase, star-forming ISM, and post-process the simulation with an adaptive ray tracing method to transfer UV radiation from star clusters. We find that the WIM volume filling factor is highly variable, and sensitive to the rate of ionizing photon production and ISM structure. The mean WIM volume filling factor rises to ~0.15 at |z|~1 kpc. Approximately half of ionizing photons are absorbed by gas and half by dust; the cumulative ionizing photon escape fraction is 1.1%. Our time-averaged synthetic H$alpha$ line profile matches WHAM observations on the redshifted (outflowing) side, but has insufficient intensity on the blueshifted side. Our simulation matches the Dickey-Lockman neutral density profile well, but only a small fraction of snapshots have high-altitude WIM density consistent with Reynolds Layer estimates. We compute a clumping correction factor C = <n_e>/sqrt<n_e^2>~0.2 that is remarkably constant with distance from the midplane and time; this can be used to improve estimates of ionized gas mass and mean electron density from observed H$alpha$ surface brightness profiles in edge-on galaxies.



قيم البحث

اقرأ أيضاً

77 - Niu Li , Cheng Li , Houjun Mo 2021
We investigate the dust attenuation in both stellar populations and ionized gas in kpc-scale regions in nearby galaxies, using integral field spectroscopy data from MaNGA MPL-9. We identify star-forming (HII) and diffuse ionized gas (DIG) regions fro m MaNGA datacubes. From the stacked spectrum of each region, we measure the stellar attenuation, $E(B-V)_{rm star}$, using the technique developed by Li et al.(2020), as well as the gas attenuation, $E(B-V)_{rm gas}$, from the Balmer decrement. We then examine the correlation of $E(B-V)_{rm star}$, $E(B-V)_{rm gas}$, $E(B-V)_{rm gas}-E(B-V)_{rm star}$ and $E(B-V)_{rm star}/E(B-V)_{rm gas}$ with 16 regional/global properties, and for regions with different $rm H{alpha}$ surface brightnesses ($Sigma_{rm Halpha}$). We find a stronger correlation between $E(B-V)_{rm star}$ and $E(B-V)_{rm gas}$ in regions of higher $Sigma_{rm Halpha}$. Luminosity-weighted age ($t_L$) is found to be the property that is the most strongly correlated with $E(B-V)_{rm star}$, and consequently with $E(B-V)_{rm gas}-E(B-V)_{rm star}$ and $E(B-V)_{rm star}/E(B-V)_{rm gas}$. At fixed $Sigma_{rm Halpha}$, $log_{10}t_L$ is linearly and negatively correlated with $E(B-V)_{rm star}/E(B-V)_{rm gas}$ at all ages. Gas-phase metallicity and ionization level are important for the attenuation in the gas. Our results indicate that the ionizing source for DIG regions is likely distributed in the outer-skirt of galaxies, while for HII regions our results can be well explained by the two-component dust model of Charlot & Fall (2000).
We investigate the impact of the diffuse ionized gas (DIG) on abundance determinations in star-forming (SF) galaxies. The DIG is characterised using the H$alpha$ equivalent width ($W_{text{H}alpha}$). From a set of 1,409 SF galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we calculate the fractional contribution of the DIG to several emission lines using high-$S/N$ data from SF spaxels (instead of using noisy emission-lines in DIG-dominated spaxels). Our method is applicable to spectra with observed $W_{text{H}alpha} gtrsim 10$ angstroms (which are not dominated by DIG emission). Since the DIG contribution depends on galactocentric distance, we provide DIG-correction formulae for both entire galaxies and single aperture spectra. Applying those to a sample of $,> 90,000$ SF galaxies from the Sloan Digital Sky Survey, we find the following. (1) The effect of the DIG on strong-line abundances depends on the index used. It is negligible for the ([O III]/H$beta$)/([N II]/H$alpha$) index, but reaches $sim 0.1$ dex at the high-metallicity end for [N II]/H$alpha$. (2) This result is based on the $sim$kpc MaNGA resolution, so the real effect of the DIG is likely greater. (3) We revisit the mass-metallicity-star formation rate (SFR) relation by correcting for the DIG contribution in both abundances and SFR. The effect of DIG removal is more prominent at higher stellar masses. Using the [N II]/H$alpha$ index, O/H increases with SFR at high stellar mass, contrary to previous claims.
Cosmic ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we post-process a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple purely diffusive formalism with constant scattering coefficient, to a physically-motivated model in which the scattering coefficient is set by critical balance between streaming-driven Alfven wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of $sim 1$ GeV (high-energy) and $sim 30$~MeV (low-energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density, hot phase, while diffusion and streaming are more important in higher density, cooler phases. Our physically-motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density $n_mathrm{H} sim 0.01, mathrm{cm}^{-3}$. Ion-neutral damping of Alfven waves results in strong diffusion and nearly uniform cosmic ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
We have obtained data for 41 star forming galaxies in the MUSE Atlas of Disks (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics ($V, sigma$) of the centers of nearby star forming ga laxies spanning 3 dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent papers of this survey. We also show how the maps can be used to study the kinematics of diffuse ionized gas for galaxies of various inclinations and masses. Using two different methods to identify the diffuse ionized gas, we measure rotation velocities of this gas for a subsample of 6 galaxies. We find that the diffuse ionized gas rotates on average slower than the star forming gas with lags of 0-10 km/s while also having higher velocity dispersion. The magnitude of these lags is on average 5 km/s lower than observed velocity lags between ionized and molecular gas. Using Jeans models to interpret the lags in rotation velocity and the increase in velocity dispersion we show that most of the diffuse ionized gas kinematics are consistent with its emission originating from a somewhat thicker layer than the star forming gas, with a scale height that is lower than that of the stellar disk.
The Diffuse Ionized Gas (DIG) contributes to the nebular emission of galaxies, resulting in emission line flux ratios that can be significantly different from those produced by HII regions. Comparing the emission of [SII]6717,31 between pointed obser vations of HII regions in nearby galaxies and integrated spectra of more distant galaxies, it has been recently claimed that the DIG can also deeply affect the emission of bright, star-forming galaxies, and that a large correction must be applied to observed line ratios to recover the genuine contribution from HII regions. Here we show instead that the effect of DIG on the integrated spectra of star-forming galaxies is lower than assumed in previous work. Indeed, aperture effects on the spectroscopy of nearby HII regions are largely responsible for the observed difference: when spectra of local HII regions are extracted using large enough apertures while still avoiding the DIG, the observed line ratios are the same as in more distant galaxies. This result is highly relevant for the use of strong-line methods to measure metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا