ترغب بنشر مسار تعليمي؟ اضغط هنا

Power System Disturbance Classification with Online Event-Driven Neuromorphic Computing

106   0   0.0 ( 0 )
 نشر من قبل Kaveri Mahapatra
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate online classification of disturbance events in a transmission network is an important part of wide-area monitoring. Although many conventional machine learning techniques are very successful in classifying events, they rely on extracting information from PMU data at control centers and processing them through CPU/GPUs, which are highly inefficient in terms of energy consumption. To solve this challenge without compromising accuracy, this paper presents a novel methodology based on event-driven neuromorphic computing architecture for classification of power system disturbances. A Spiking Neural Network (SNN)-based computing framework is proposed, which exploits sparsity in disturbances and promotes local event driven operation for unsupervised learning and inference from incoming data. Spatio-temporal information of PMU signals is first extracted and encoded into spike trains and classification is achieved with SNN-based supervised and unsupervised learning framework. Moreover, a QR decomposition-based selection technique is proposed to identify signals participating in the low rank subspace of multiple disturbance events. Performance of the proposed method is validated on data collected from a 16-machine, 5-area New England-New York system.



قيم البحث

اقرأ أيضاً

Transformers are critical assets in power systems and transformer failures can cause asset damage, customer outages, and safety concerns. Dominion Energy has a sophisticated monitoring process for the transformers. One of the most cost-efficient, con venient and practical transformer monitoring methods in industry is Dissolved Gas Analysis(DGA). Leveraging new technology, on-line transformer monitoring equipment is able to measure samples automatically. The challenges of unstable sampling measurements and contradicted analysis results for DGA are discussed in this paper. To provide further insight of transformer health and support a new transformer monitoring process in Dominion Energy, a DGA monitoring system is proposed. The DGA analysis methods used in the monitoring system are selected based on laboratory verification results from Dominion Energy. After derive the thresholds from IEEE standard, the solution of the proposed monitoring system and test results are presented. In the end, a historical transformer failure case in Dominion was analyzed and the results indicate the monitoring system can provide prescient information and sufficient supplemental report for making operational decisions.
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely m odel-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.
Non-stationary forced oscillations (FOs) have been observed in power system operations. However, most detection methods assume that the frequency of FOs is stationary. In this paper, we present a methodology for the analysis of non-stationary FOs. Fi rstly, Fourier synchrosqueezing transform (FSST) is used to provide a concentrated time-frequency representation of the signals that allows identification and retrieval of non-stationary signal components. To continue, the Dissipating Energy Flow (DEF) method is applied to the extracted components to locate the source of forced oscillations. The methodology is tested using simulated as well as real PMU data. The results show that the proposed FSST-based signal decomposition provides a systematic framework for the application of DEF Method to non-stationary FOs.
The significant imbalance between power generation and load caused by severe disturbance may make the power system unable to maintain a steady frequency. If the post-disturbance dynamic frequency features can be predicted and emergency controls are a ppropriately taken, the risk of frequency instability will be greatly reduced. In this paper, a predictive algorithm for post-disturbance dynamic frequency features is proposed based on convolutional neural network (CNN) . The operation data before and immediately after disturbance is used to construct the input tensor data of CNN, with the dynamic frequency features of the power system after the disturbance as the output. The operation data of the power system such as generators unbalanced power has spatial distribution characteristics. The electrical distance is presented to describe the spatial correlation of power system nodes, and the t-SNE dimensionality reduction algorithm is used to map the high-dimensional distance information of nodes to the 2-D plane, thereby constructing the CNN input tensor to reflect spatial distribution of nodes operation data on 2-D plane. The CNN with deep network structure and local connectivity characteristics is adopted and the network parameters are trained by utilizing the backpropagation-gradient descent algorithm. The case study results on an improved IEEE 39-node system and an actual power grid in USA shows that the proposed method can predict the lowest frequency of power system after the disturbance accurately and quickly.
In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا