Lattice walk area combinatorics, some remarkable trigonometric sums and Apery-like numbers


الملخص بالإنكليزية

Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walk, and in particular for the triangular lattice chiral walk recently introduced by the authors. A key element in the enumeration is the derivation of some remarkable identities involving trigonometric sums --which are also important building blocks of non trivial quantum models such as the Hofstadter model-- and their explicit rewriting in terms of multiple binomial sums. An intriguing connection is also made with number theory and some classes of Apery-like numbers, the cousins of the Apery numbers which play a central role in irrationality considerations for {zeta}(2) and {zeta}(3).

تحميل البحث