ﻻ يوجد ملخص باللغة العربية
Non-Gaussianity of the cosmological matter density field can be largely reduced by a local Gaussianization transformation (and its approximations such as the logrithmic transformation). Such behavior can be recasted as the Gaussian copula hypothesis, and has been verified to very high accuracy at two-point level. On the other hand, statistically significant non-Gaussianities in the Gaussianized field have been detected in simulations. We point out that, this apparent inconsistency is caused by the very limited degrees of freedom in the copula function, which make it misleading as a diagnosis of residual non-Gaussianity in the Gaussianized field. Using the copula density, we highlight the departure from Gaussianity. We further quantify its impact in the predicted n-point correlation functions. We explore a remedy of the Gaussian copula hypothesis, which alleviates but not completely solves the above problems.
The one-point probability distribution function (PDF) of the matter density field in the universe is a fundamental property that plays an essential role in cosmology for estimates such as gravitational weak lensing, non-linear clustering, massive pro
The cosmological dark matter field is not completely described by its hierarchy of $N$-point functions, a non-perturbative effect with the consequence that only part of the theory can be probed with the hierarchy. We give here an exact characterizati
We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations
We discuss how to efficiently and reliably estimate the level of agreement and disagreement on parameter determinations from different experiments, fully taking into account non-Gaussianities in the parameter posteriors. We develop two families of sc
Perturbative quantities, such as the growth rate ($f$) and index ($gamma$), are powerful tools to distinguish different dark energy models or modified gravity theories even if they produce the same cosmic expansion history. In this work, without any