ﻻ يوجد ملخص باللغة العربية
The Turan number of a graph $H$, $text{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. A wheel $W_n$ is an $n$-vertex graph formed by connecting a single vertex to all vertices of a cycle $C_{n-1}$. Let $mW_{2k+1}$ denote the $m$ vertex-disjoint copies of $W_{2k+1}$. For sufficiently large $n$, we determine the Turan number and all extremal graphs for $mW_{2k+1}$. We also provide the Turan number and all extremal graphs for $W^{h}:=bigcuplimits^m_{i=1}W_{k_i}$ when $n$ is sufficiently large, where the number of even wheels is $h$ and $h>0$.
A Gallai coloring of a complete graph is an edge-coloring such that no triangle has all its edges colored differently. A Gallai $k$-coloring is a Gallai coloring that uses $k$ colors. Given a graph $H$ and an integer $kgeq 1$, the Gallai-Ramsey numbe
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
We show that the Union-Closed Conjecture holds for the union-closed family generated by the cyclic translates of any fixed set.
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
The Turan number of a graph H, ex(n,H), is the maximum number of edges in a graph on n vertices which does not have H as a subgraph. Let P_k be the path with k vertices, the square P^2_k of P_k is obtained by joining the pairs of vertices with distan