ﻻ يوجد ملخص باللغة العربية
Gated molybdenum disulphide (MoS2) exhibits a rich phase diagram upon increasing electron doping, including a superconducting phase, a polaronic reconstruction of the bandstructure, and structural transitions away from the 2H polytype. The average time between two charge-carrier scattering events - the scattering lifetime - is a key parameter to describe charge transport and obtain physical insight in the behavior of such a complex system. In this work, we combine the solution of the Boltzmann transport equation (based on ab-initio density functional theory calculations of the electronic bandstructure) with the experimental results concerning the charge-carrier mobility, in order to determine the scattering lifetime in gated MoS2 nanolayers as a function of electron doping and temperature. From these dependencies, we assess the major sources of charge-carrier scattering upon increasing band filling, and discover two narrow ranges of electron doping where the scattering lifetime is strongly suppressed. We indentify the opening of additional intervalley scattering channels connecting the simultaneously-filled K/K and Q/Q valleys in the Brillouin zone as the source of these reductions, which are triggered by the two Lifshitz transitions induced by the filling of the high-energy Q/Q valleys upon increasing electron doping.
Gate-induced superconductivity at the surface of nanolayers of semiconducting transition metal dichalcogenides (TMDs) has attracted a lot of attention in recent years, thanks to the sizeable transition temperature, robustness against in-plane magneti
We report the discovery of a strong and tunable spin lifetime anisotropy with excellent spin lifetimes up to 7.8 ns in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically-controlled spin-orbit
We performed infrared transmission experiment on ion-gel gated graphene and measured carrier scattering rate g as function of carrier density n over wide range up to n=2E13 cm-2. The g exhibits a rapid decreases along with the gating followed by pers
Interactions between two excitons can result in the formation of bound quasiparticles, known as biexcitons. Their properties are determined by the constituent excitons, with orbital and spin states resembling those of atoms. Monolayer transition meta
Monolayer transition metal dichalcogenides offer the possibility of optical control of the valley degree of freedom. In order to asses the potential of these materials in applications, detailed knowledge of the valley dynamics is essential. In this w