ترغب بنشر مسار تعليمي؟ اضغط هنا

On Noise Injection in Generative Adversarial Networks

383   0   0.0 ( 0 )
 نشر من قبل Ruili Feng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Noise injection has been proved to be one of the key technique advances in generating high-fidelity images. Despite its successful usage in GANs, the mechanism of its validity is still unclear. In this paper, we propose a geometric framework to theoretically analyze the role of noise injection in GANs. Based on Riemannian geometry, we successfully model the noise injection framework as fuzzy equivalence on the geodesic normal coordinates. Guided by our theories, we find that the existing method is incomplete and a new strategy for noise injection is devised. Experiments on image generation and GAN inversion demonstrate the superiority of our method.



قيم البحث

اقرأ أيضاً

103 - Zhe Gan , Liqun Chen , Weiyao Wang 2017
A Triangle Generative Adversarial Network ($Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by o nly a few paired samples. $Delta$-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti vely disentangles $z$ and $c$ in the generation process and provides an encoder that learns inverse mappings from $x$ to both $z$ and $c$, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode $c$ more accurately, and utilize $z$ and $c$ more effectively and in a more disentangled way to generate samples.
Generative models are undoubtedly a hot topic in Artificial Intelligence, among which the most common type is Generative Adversarial Networks (GANs). These architectures let one synthesise artificial datasets by implicitly modelling the underlying pr obability distribution of a real-world training dataset. With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset. From a practical standpoint, however, one might desire to generate data conditioned on partial information. That is, only a subset of the ancillary conditioning variables might be of interest when synthesising data. In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy to deal with the ensuing problems. Experiments illustrating the value of the proposed approach in digit and face image synthesis under partial conditioning information are presented, showing that the proposed method can effectively outperform the standard approach under these circumstances.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection i n GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among differ ent GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا