ﻻ يوجد ملخص باللغة العربية
Noise injection has been proved to be one of the key technique advances in generating high-fidelity images. Despite its successful usage in GANs, the mechanism of its validity is still unclear. In this paper, we propose a geometric framework to theoretically analyze the role of noise injection in GANs. Based on Riemannian geometry, we successfully model the noise injection framework as fuzzy equivalence on the geodesic normal coordinates. Guided by our theories, we find that the existing method is incomplete and a new strategy for noise injection is devised. Experiments on image generation and GAN inversion demonstrate the superiority of our method.
A Triangle Generative Adversarial Network ($Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by o
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti
Generative models are undoubtedly a hot topic in Artificial Intelligence, among which the most common type is Generative Adversarial Networks (GANs). These architectures let one synthesise artificial datasets by implicitly modelling the underlying pr
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection i
Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among differ