ﻻ يوجد ملخص باللغة العربية
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations. We corroborate that the data converge in the $beta$-scaling regime to two asymptotic power laws, viz. the critical decay and the von Schweidler law. The numerical results reveal a non-monotonic dependence of the power-law exponents on the slab width and a non-trivial kink in the low-frequency susceptibility spectra. We also find qualitative agreement of these theoretical results to event-driven molecular-dynamics simulations of polydisperse hard-sphere system. In particular, the non-trivial dependence of the dynamical properties on the slab width is well reproduced.
The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational
We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalise the Integration Through Transients (textsc{itt}) formalism to a fluid of
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields
Glass forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition (MCT) we calculate the self-nonergodicit