ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of magnetic interface and its effect in Fe/NiFe bilayers of alternating order

67   0   0.0 ( 0 )
 نشر من قبل Subhankar Bedanta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive study on the magnetization reversal in Fe/NiFe bilayer system by alternating the order of the magnetic layers. All the samples show growth-induced uniaxial magnetic anisotropy due to oblique angle deposition technique. Strong interfacial exchange coupling between the Fe and NiFe layers leads to the single-phase hysteresis loops in the bilayer system. The strength of coupling being dependent on the interface changes upon alternating the order of magnetic layers. The magnetic parameters such as coercivity HC, and anisotropy field HK become almost doubled when NiFe layer is grown over the Fe layers. This enhancement in the magnetic parameters is primarily dependent on the increase of the thickness and magnetic moment of Fe-NiFe interfacial layer as revealed from the polarized neutron reectivity (PNR) data of the bilayer samples. The difference in the thickness and magnetization of the Fe-NiFe interfacial layer indicates the modification of the microstructure by alternating the order of the magnetic layers of the bilayers. The interfacial magnetic moment increased by almost 18 % when NiFe layer is grown over the Fe layer. In spite of the different values of anisotropy fields and modified interfacial exchange coupling, the Gilbert damping constant values of the ferromagnetic bilayers remain similar to single NiFe layer.



قيم البحث

اقرأ أيضاً

119 - W. J. Xu , B. Zhang , Z. X. Liu 2010
Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films.
A cluster deposition method was used to produce films of loosely aggregated nanoclusters (NC) of Fe core-Fe3O4 shell or fully oxidized Fe3O4. Films of these NC on Si(100) or MgO(100)/Fe3O4(100) were irradiated to 10^16 Si2+/cm2 near room temperature using an ion accelerator. Ion irradiation creates structural change in the NC film with corresponding chemical and magnetic changes which depend on the initial oxidation state of the cluster. Films were characterized using magnetometry (hysteresis, first order reversal curves), microscopy (transmission electron, helium ion), and x-ray diffraction. In all cases, the particle sizes increased due to ion irradiation, and when a core of Fe is present, irradiation reduces the oxide shells to lower valent Fe species. These results show that ion irradiated behavior of the nanocluster films depends strongly on the initial nanostructure and chemistry, but in general saturation magnetization decreases slightly.
We observe the magnetic proximity effect (MPE) in Pt/CoFe2O4 bilayers grown by molecular beam epitaxy. This is revealed through angle-dependent magnetoresistance measurements at 5 K, which isolate the contributions of induced ferromagnetism (i.e. ani sotropic magnetoresistance) and spin Hall effect (i.e. spin Hall magnetoresistance) in the Pt layer. The observation of induced ferromagnetism in Pt via AMR is further supported by density functional theory calculations and various control measurements including insertion of a Cu spacer layer to suppress the induced ferromagnetism. In addition, anomalous Hall effect measurements show an out-of-plane magnetic hysteresis loop of the induced ferromagnetic phase with larger coercivity and larger remanence than the bulk CoFe2O4. By demonstrating MPE in Pt/CoFe2O4, these results establish the spinel ferrite family as a promising material for MPE and spin manipulation via proximity exchange fields.
Recently, perpendicular magnetic anisotropy (PMA) and its voltage control (VC) was demonstrated for Cr/Fe/MgO (Physical Review Applied 5, 044006 (2016)). In this study, we shed a light on the origin of large voltage-induced anisotropy change in Cr/Fe /MgO. Analysis of the chemical structure of Cr/Fe/MgO revealed the existence of Cr atoms in the proximity of the Fe/MgO interface, which can affect both magnetic anisotropy (MA) and its VC. We showed that PMA and its VC can be enhanced by controlled Cr doping at the Fe/MgO interface. For Cr/Fe (5.9 {AA})/Cr (0.7 {AA})/MgO with an effective PMA of 0.8 MJ/m3, a maximum value of the voltage-controlled magnetic anisotropy (VCMA) effect of 370 fJ/Vm was demonstrated.
We present x-ray resonant magnetic reflectivity (XRMR) as a very sensitive tool to detect proximity induced interface spin polarization in Pt/Fe, Pt/Ni$_{33}$Fe$_{67}$, Pt/Ni$_{81}$Fe$_{19}$ (permalloy), and Pt/Ni bilayers. We demonstrate that a deta iled analysis of the reflected x-ray intensity gives insight in the spatial distribution of the spin polarization of a non-magnetic metal across the interface to a ferromagnetic layer. The evaluation of the experimental results with simulations based on optical data from ab initio calculations provides the induced magnetic moment per Pt atom in the spin polarized volume adjacent to the ferromagnet. We find the largest spin polarization in Pt/Fe and a much smaller magnetic proximity effect in Pt/Ni. Additional XRMR experiments with varying photon energy are in good agreement with the theoretical predictions for the energy dependence of the magnetooptic parameters and allow identifying the optical dispersion $delta$ and absorption $beta$ across the Pt L3-absorption edge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا