ﻻ يوجد ملخص باللغة العربية
We investigate theoretically on the basis of the steady Stokes equations for a viscous incompressible fluid the flow induced by a Stokeslet located on the centre axis of two coaxially positioned rigid disks. The Stokeslet is directed along the centre axis. No-slip boundary conditions are assumed to hold at the surfaces of the disks. We perform the calculation of the associated Greens function in large parts analytically, reducing the spatial evaluation of the flow field to one-dimensional integrations amenable to numerical treatment. To this end, we formulate the solution of the hydrodynamic problem for the viscous flow surrounding the two disks as a mixed-boundary-value problem, which we then reduce into a system of four dual integral equations. We show the existence of viscous toroidal eddies arising in the fluid domain bounded by the two disks, manifested in the plane containing the centre axis through adjacent counterrotating eddies. Additionally, we probe the effect of the confining disks on the slow dynamics of a point-like particle by evaluating the hydrodynamic mobility function associated with axial motion. Thereupon, we assess the appropriateness of the commonly-employed superposition approximation and discuss its validity and applicability as a function of the geometrical properties of the system. Additionally, we complement our semi-analytical approach by finite-element computer simulations, which reveals a good agreement. Our results may find applications in guiding the design of microparticle-based sensing devices and electrokinetic transport in small scale capacitors.
Geometric confinements play an important role in many physical and biological processes and significantly affect the rheology and behavior of colloidal suspensions at low Reynolds numbers. On the basis of the linear Stokes equations, we investigate t
Chaotic mixing in a closed vessel is studied experimentally and numerically in different 2-D flow configurations. For a purely hyperbolic phase space, it is well-known that concentration fluctuations converge to an eigenmode of the advection-diffusio
A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to
We study the flow of membranal fluid through a ring of immobile particles mimicking, for example, a fence around a membrane corral. We obtain a simple closed-form expression for the permeability coefficient of the ring as a function of the particles
Previous studies of precariously balanced objects in seismically active regions provide important information for aseismatic engineering and theoretical seismology. They are almost founded on an oversimplified assumption: any 3-dimensional (3D) actua