ﻻ يوجد ملخص باللغة العربية
Efficient ab initio computational methods for the calculation of thermoelectric transport properties of materials are of great avail for energy harvesting technologies. The BoltzTraP code has been largely used to efficiently calculate thermoelectric coefficients. However, its current version that is publicly available is based only on the constant relaxation time (RT) approximation, which usually does not hold for real materials. Here, we extended the implementation of the BoltzTraP code by incorporating realistic k-dependent RT models of the temperature dependence of the main scattering processes, namely, screened polar and nonpolar scattering by optical phonons, scattering by acoustic phonons, and scattering by ionized impurities with screening. Our RT models are based on a smooth Fourier interpolation of Kohn-Sham eigenvalues and its derivatives, taking into account non-parabolicity (beyond the parabolic or Kane models), degeneracy and multiplicity of the energy bands on the same footing, within very low computational cost. In order to test our methodology, we calculated the anisotropic thermoelectric transport properties of low temperature phase (Pnma) of intrinsic p-type and hole-doped tin selenide (SnSe). Our results are in quantitative agreement with experimental data, regarding the evolution of the anisotropic thermoelectric coefficients with both temperature and chemical potential. Hence, from this picture, we also obtained the evolution and understanding of the main scattering processes of the overall thermoelectric transport in p-type SnSe.
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles in
Optically and magnetically active point defects in semiconductors are interesting platforms for the development of solid-state quantum technologies. Their optical properties are usually probed by measuring photoluminescence spectra, which provide inf
The defect relaxation volumes obtained from density-functional theory (DFT) calculations of charged vacancies and interstitials are much larger than their neutral counterparts, seemingly unphysically large. In this work, we investigate the possible r
While cadmium telluride (CdTe) thin films are being used in solar cell prototyping for decades, the recent advent of two-dimensional (2D) materials challenges the fundamental limit for thickness of conventional CdTe layers. Here, we report our theore