ترغب بنشر مسار تعليمي؟ اضغط هنا

The slow heartbeats of an ultra-luminous X-ray source in NGC 3621

88   0   0.0 ( 0 )
 نشر من قبل Sara Elisa Motta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of X-ray observations of 4XMM J111816.0-324910, a transient ultra-luminous X-ray source located in the galaxy NGC 3621. This system is characterised by a transient nature and marked variability with characteristic time-scale of ~3500 s, differently from other ULXs, which in the vast majority show limited intra-observation variability. Such a behaviour is very reminiscent of the so-called heartbeats sometimes observed in the Galactic black hole binary GRS 1915+105, where the variability time-scale is ~10-1000 s. We study the spectral and timing properties of this object and find that overall, once the differences in the variability time-scales are taken into account, they match quite closely those of both GRS 1915+105, and of a number of objects showing heartbeats in their light-curves, including a confirmed neutron star and a super-massive black hole powering an active galactic nucleus. We investigate the nature of the compact object in 4XMM J111816.0-324910 by searching for typical neutron star signatures and by attempting a mass estimate based on different methods and assumptions. Based on the current available data, we are not able to unambiguously determine the nature of the accreting compact object responsible for the observed phenomenology.



قيم البحث

اقرأ أيضاً

414 - E. Ripamonti 2010
Recent models of the formation of ultra-luminous X-ray sources (ULXs) predict that they preferentially form in low-metallicity environments. We look at the metallicity of the nebula surrounding NGC 1313 X-2, one of the best-studied ULXs. Simple estim ates, based on the extrapolation of the metallicity gradient within NGC 1313, or on empirical calibrations (relating metallicity to strong oxygen lines) suggest a quite low metal content (Z ~ 0.1 Zsun). But such estimates do not account for the remarkably strong X-ray flux irradiating the nebula. Then, we build photoionization models of the nebula using CLOUDY; using such models, the constraints on the metallicity weaken substantially, as we find 0.15 Zsun <= Z <= 0.5 Zsun.
In this paper we present the best quality XMM-Newton and Suzaku data from M82 X-1 so far. We analyze the spectra of this remarkable Ultra-Luminous X-ray Source in a self-consistent manner. We have disentangled emission from the host galaxy, responsib le for the soft X-ray emission (E<2.5 keV), which is successfully described by a two-temperature thermal emission from a hot plasma in multi-phase state, plus a narrow Fe line emission at 6.7 keV. This allowed us to properly study the intrinsic continuum emission from M82 X-1. The continuum of the Suzaku spectrum is curved and the high quality data of the Suzaku spectrum allowed us to significantly detect a weakly broadened Fe K-alpha emission line. The Equivalent-Width is in the range 30-80 eV and it does not depend on the model applied for the continuum. Assuming that this line is coming from the ULX via disc fluorescence, the data indicates a disc truncation at a radius of 6-20 gravitational radii. This value is comparable to or even larger than the Innermost Stable Circular Orbit of a non-spinning (Schwarzschild) black hole. Future longer observations might test this scenario.
The nature of ultra-luminous X-ray sources (ULXs), which are off-nuclear extragalactic X-ray sources that exceed the Eddington luminosity for a stellar-mass black hole, is still largely unknown. They might be black hole X-ray binaries in a super-Eddi ngton accretion state, possibly with significant beaming of their emission, or they might harbor a black hole of intermediate mass (10^2 to 10^5 solar masses). Due to the enormous amount of energy radiated, ULXs can have strong interactions with their environment, particularly if the emission is not beamed and if they host a massive black hole. We present early results of a project that uses archival Herschel infrared observations of galaxies hosting bright ULXs in order to constrain the nature of the environment surrounding the ULXs and possible interactions. We already observe a spatial correlation between ULXs and dense clouds of cold material, that will be quantified in subsequent work. Those observations will allow us to test the similarities with the environment of Galactic high mass X-ray binaries. This project will also shed light on the nature of the host galaxies, and the possible factors that could favor the presence of a ULX in a galaxy.
183 - A. Senorita Devi 2008
We report variability of the X-ray source, X-7, in NGC 6946, during a 60 ksec Chandra observation when the count rate decreased by a factor of ~1.5 in ~5000 secs. Spectral fitting of the high and low count rate segments of the light curve reveal that the simplest and most probable interpretation is that the X-ray spectra are due to disk black body emission with an absorbing hydrogen column density equal to the Galactic value of 2.1 X 10^{21} cm^{-2}. During the variation, the inner disk temperature decreased from ~0.29 to ~0.26 keV while the inner disk radius remained constant at ~6 X 10^8 cm. This translates into a luminosity variation from 3.8 to 2.8 X 10^{39} ergs cm^{-2} sec^{-1} and a black hole mass of ~400 solar masses. More complicated models like assuming intrinsic absorption and/or the addition of a power-law component imply a higher luminosity and a larger black hole mass. Even if the emission is beamed by a factor of ~5, the size of the emitting region would be > 2.7 X 10^8 cm implying a black hole mass > 180 solar masses. Thus, these spectral results provide strong evidence that the mass of the black hole in this source is definitely > 100 solar masses and more probably ~400 solar masses.
132 - Anna Wolter 2014
A puzzling class of exotic objects, which have been known about for more than 30 years, is reaching a new era of understanding. We have discovered hundreds of Ultra Luminous X-ray sources (ULXs) - non-nuclear sources with X-ray luminosity in excess o f the Eddington luminosity for normal size stellar Black Holes (BH) - and we are making progresses towards understanding their emission mechanisms. The current explanations imply either a peculiar state of accretion onto a stellar size BH or the presence of an intermediate mass BH, the long-sought link between stellar and supermassive BHs. Both models might co-exist and therefore studying this class of object will give insight into the realm of accretion in a variety of environments and at the same time find look-alikes of the primordial seed BHs that are thought to be at the origin of todays supermassive BHs at the centre of galaxies. The radio band has been exploited only scantily due to the relative faint fluxes of the sources, but we know a number of interesting sources exhibiting both extended emission (like bubbles and possibly jets) and cores, as well as observed transient behaviour. The new eras of the SKA will lead us to a major improvement of our insight of the extreme accretion within ULXs. We will both investigate in detail known sources and research new and fainter ones. When we have reached a thorough understanding of radio emission in ULX we could also use the SKA as a discovery instrument for new ULX candidates. The new array will give an enormous space to discovery: sources like the ones currently known will be detected in a snapshot up to 50 Mpc instead of at 5 Mpc with long, pointed observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا