ﻻ يوجد ملخص باللغة العربية
The mass growth of protostars is a central element to the determination of fundamental stellar population properties such as the initial mass function. Constraining the accretion history of individual protostars is therefore an important aspect of star formation research. The goal of the study presented here is to determine whether high-mass (proto)stars gain their mass from a compact (<0.1pc) fixed-mass reservoir of gas, often referred to as dense cores, in which they are embedded, or whether the mass growth of high-mass stars is governed by the dynamical evolution of the parsec-scale clump that typically surrounds them. To achieve this goal, we performed a 350micron continuum mapping of 11 infrared dark clouds, along side some of their neighbouring clumps, with the ArTeMiS camera on APEX. By identifying about 200 compact ArTeMiS sources, and matching them with Herschel Hi-GAL 70micron sources, we have been able to produce mass vs. temperature diagrams. We compare the nature (i.e. starless or protostellar) and location of the ArTeMiS sources in these diagrams with modelled evolutionary tracks of both core-fed and clump-fed accretion scenarios. We argue that the latter provide a better agreement with the observed distribution of high-mass star-forming cores. However, a robust and definitive conclusion on the question of the accretion history of high-mass stars requires larger number statistics.
High-mass Stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as Infrared Dark Clouds (IRDCs), are the nurs
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On
We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise
Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenom
We present the Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pre-pilot observations of two `dark HI sources (with HI masses of a few times 10^8 Msol and no known stellar counterpart) that reside within 363 kpc of NGC 1395, the most mas