ترغب بنشر مسار تعليمي؟ اضغط هنا

SEKD: Self-Evolving Keypoint Detection and Description

157   0   0.0 ( 0 )
 نشر من قبل Yafei Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Researchers have attempted utilizing deep neural network (DNN) to learn novel local features from images inspired by its recent successes on a variety of vision tasks. However, existing DNN-based algorithms have not achieved such remarkable progress that could be partly attributed to insufficient utilization of the interactive characters between local feature detector and descriptor. To alleviate these difficulties, we emphasize two desired properties, i.e., repeatability and reliability, to simultaneously summarize the inherent and interactive characters of local feature detector and descriptor. Guided by these properties, a self-supervised framework, namely self-evolving keypoint detection and description (SEKD), is proposed to learn an advanced local feature model from unlabeled natural images. Additionally, to have performance guarantees, novel training strategies have also been dedicatedly designed to minimize the gap between the learned feature and its properties. We benchmark the proposed method on homography estimation, relative pose estimation, and structure-from-motion tasks. Extensive experimental results demonstrate that the proposed method outperforms popular hand-crafted and DNN-based methods by remarkable margins. Ablation studies also verify the effectiveness of each critical training strategy. We will release our code along with the trained model publicly.



قيم البحث

اقرأ أيضاً

Keypoint detection and description is a commonly used building block in computer vision systems particularly for robotics and autonomous driving. Recently CNN based approaches have surpassed classical methods in a number of perception tasks. However, the majority of techniques to date have focused on standard cameras with little consideration given to fisheye cameras which are commonly used in autonomous driving. In this paper, we propose a novel training and evaluation pipeline for fisheye images. We make use of SuperPoint as our baseline which is a self-supervised keypoint detector and descriptor that has achieved state-of-the-art results on homography estimation. We introduce a fisheye adaptation pipeline to enable training on undistorted fisheye images. We evaluate the performance on the HPatches benchmark, and, by introducing a fisheye based evaluation methods for detection repeatability and descriptor matching correctness on the Oxford RobotCar datasets.
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visua l patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named CornerNet. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of 47.0%, which outperforms all existing one-stage detectors by at least 4.9%. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/Duankaiwen/CenterNet.
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regres sion tasks, especially in the practical keypoint detection task. To tackle this difficult but significant task, we present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection. Inspired by the latest theoretical work, we first utilize an adversarial regressor to maximize the disparity on the target domain and train a feature generator to minimize this disparity. However, due to the high dimension of the output space, this regressor fails to detect samples that deviate from the support of the source. To overcome this problem, we propose two important ideas. First, based on our observation that the probability density of the output space is sparse, we introduce a spatial probability distribution to describe this sparsity and then use it to guide the learning of the adversarial regressor. Second, to alleviate the optimization difficulty in the high-dimensional space, we innovatively convert the minimax game in the adversarial training to the minimization of two opposite goals. Extensive experiments show that our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
Todays most popular approaches to keypoint detection involve very complex network architectures that aim to learn holistic representations of all keypoints. In this work, we take a step back and ask: Can we simply learn a local keypoint representatio n from the output of a standard backbone architecture? This will help make the network simpler and more robust, particularly if large parts of the object are occluded. We demonstrate that this is possible by looking at the problem from the perspective of representation learning. Specifically, the keypoint kernels need to be chosen to optimize three types of distances in the feature space: Features of the same keypoint should be similar to each other, while differing from those of other keypoints, and also being distinct from features from the background clutter. We formulate this optimization process within a framework, which we call CoKe, which includes supervised contrastive learning. CoKe needs to make several approximations to enable representation learning process on large datasets. In particular, we introduce a clutter bank to approximate non-keypoint features, and a momentum update to compute the keypoint representation while training the feature extractor. Our experiments show that CoKe achieves state-of-the-art results compared to approaches that jointly represent all keypoints holistically (Stacked Hourglass Networks, MSS-Net) as well as to approaches that are supervised by detailed 3D object geometry (StarMap). Moreover, CoKe is robust and performs exceptionally well when objects are partially occluded and significantly outperforms related work on a range of diverse datasets (PASCAL3D+, MPII, ObjectNet3D).
Many image-based perception tasks can be formulated as detecting, associating and tracking semantic keypoints, e.g., human body pose estimation and tracking. In this work, we present a general framework that jointly detects and forms spatio-temporal keypoint associations in a single stage, making this the first real-time pose detection and tracking algorithm. We present a generic neural network architecture that uses Composite Fields to detect and construct a spatio-temporal pose which is a single, connected graph whose nodes are the semantic keypoints (e.g., a persons body joints) in multiple frames. For the temporal associations, we introduce the Temporal Composite Association Field (TCAF) which requires an extended network architecture and training method beyond previous Composite Fields. Our experiments show competitive accuracy while being an order of magnitude faster on multiple publicly available datasets such as COCO, CrowdPose and the PoseTrack 2017 and 2018 datasets. We also show that our method generalizes to any class of semantic keypoints such as car and animal parts to provide a holistic perception framework that is well suited for urban mobility such as self-driving cars and delivery robots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا