The development of advanced closed-loop irrigation systems requires accurate soil moisture information. In this work, we address the problem of soil moisture estimation for the agro-hydrological systems in a robust and reliable manner. A nonlinear state-space model is established based on the discretization of the Richards equation to describe the dynamics of agro-hydrological systems. We consider that model parameters are unknown and need to be estimated together with the states simultaneously. We propose a consensus-based estimation mechanism, which comprises two main parts: 1) a distributed extended Kalman filtering algorithm used to estimate several model parameters; and 2) a distributed moving horizon estimation algorithm used to estimate the state variables and one remaining model parameter. Extensive simulations are conducted, and comparisons with existing methods are made to demonstrate the effectiveness and superiority of the proposed approach. In particular, the proposed approach can provide accurate soil moisture estimate even when poor initial guesses of the parameters and the states are used, which can be challenging to be handled using existing algorithms.