ترغب بنشر مسار تعليمي؟ اضغط هنا

200 mm Sensor Development Using Bonded Wafers

65   0   0.0 ( 0 )
 نشر من قبل Ronald Lipton
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of these devices have increased from a few square cm to $> 200 m^2$ for the existing CMS tracker. High Luminosity Large Hadron Collider (HL-LHC), CMS and ATLAS tracker upgrades will each require more than $200 m^2$ of silicon and the CMS High Granularity Calorimeter (HGCAL) will require more than $600 m^2$. The cost and complexity of assembly of these devices is related to the area of each module, which in turn is set by the size of the silicon sensors. In addition to large area, the devices must be radiation hard, which requires the use of sensors thinned to 200 microns or less. The combination of wafer thinning and large wafer diameter is a significant technical challenge, and is the subject of this work. We describe work on development of thin sensors on $200 mm$ wafers using wafer bonding technology. Results of development runs with float zone, Silicon-on-Insulator and Silicon-Silicon bonded wafer technologies are reported.



قيم البحث

اقرأ أيضاً

95 - D.-L. Pohl 2017
Pixel sensors using 8 CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 $times$ 10$^{15}$ n$_{rm eq}$ cm$^{-2}$. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.
69 - Y. Kamiya , T. Miyoshi , H. Iwase 2020
We have developed a neutron imaging sensor based on an INTPIX4-SOI pixelated silicon device. Neutron irradiation tests are performed at several neutron facilities to investigate sensors responses for neutrons. Detection efficiency is measured to be a round $1.5$% for thermal neutrons. Upper bound of spatial resolution is evaluated to be $4.1 pm 0.2 ~mu$m in terms of a standard deviation of the line spread function.
Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based Tin detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. De tailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of $sim 4times10^{16}/cm^2$. Both PALS and Channeling studies have shown that vacuum annealing at 600 $^circ$C for $sim2$ hours is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitatio ns of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges
An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silico n oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffer from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry witch mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا