ﻻ يوجد ملخص باللغة العربية
The interaction between off-resonant laser pulses and excitons in monolayer transition metal dichalcogenides is attracting increasing interest as a route for the valley-selective coherent control of the exciton properties. Here, we extend the classification of the known off-resonant phenomena by unveiling the impact of a strong THz field on the excitonic resonances of monolayer MoS$_2$. We observe that the THz pump pulse causes a selective modification of the coherence lifetime of the excitons, while keeping their oscillator strength and peak energy unchanged. We rationalize these results theoretically by invoking a hitherto unobserved manifestation of the Franz-Keldysh effect on an exciton resonance. As the modulation depth of the optical absorption reaches values as large as 0.05 dB/nm at room temperature, our findings open the way to the use of semiconducting transition metal dichalcogenides as compact and efficient platforms for high-speed electroabsorption devices.
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chi
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num
We report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides (TMDs), specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transit
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons