ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

107   0   0.0 ( 0 )
 نشر من قبل Tiago Diadami Perez
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In todays integrated circuit (IC) ecosystem, owning a foundry is not economically viable, and therefore most IC design houses are now working under a fabless business model. In order to overcome security concerns associated with the outsorcing of IC fabrication, the Split Manufacturing technique was proposed. In Split Manufacturing, the Front End of Line (FEOL) layers (transistors and lower metal layers) are fabricated at an untrusted high-end foundry, while the Back End of Line (BEOL) layers (higher metal layers) are manufactured at a trusted low-end foundry. This approach hides the BEOL connections from the untrusted foundry, thus preventing overproduction and piracy threats. However, many works demonstrate that BEOL connections can be derived by exploiting layout characteristics that are introduced by heuristics employed in typical floorplanning, placement, and routing algorithms. Since straightforward Split Manufacturing may not afford a desirable security level, many authors propose defense techniques to be used along with Split Manufacturing. In our survey, we present a detailed overview of the technique, the many types of attacks towards Split Manufacturing, as well as possible defense techniques described in the literature. For the attacks, we present a concise discussion on the different threat models and assumptions, while for the defenses we classify the studies into three categories: proximity perturbation, wire lifting, and layout obfuscation. The main outcome of our survey is to highlight the discrepancy between many studies -- some claim netlists can be reconstructed with near perfect precision, while others claim marginal success in retrieving BEOL connections. Finally, we also discuss future trends and challenges inherent to Split Manufacturing, including the fundamental difficulty of evaluating the efficiency of the technique.



قيم البحث

اقرأ أيضاً

88 - Xiaoyu Zhang , Chao Chen , Yi Xie 2021
Deep Neural Network (DNN), one of the most powerful machine learning algorithms, is increasingly leveraged to overcome the bottleneck of effectively exploring and analyzing massive data to boost advanced scientific development. It is not a surprise t hat cloud computing providers offer the cloud-based DNN as an out-of-the-box service. Though there are some benefits from the cloud-based DNN, the interaction mechanism among two or multiple entities in the cloud inevitably induces new privacy risks. This survey presents the most recent findings of privacy attacks and defenses appeared in cloud-based neural network services. We systematically and thoroughly review privacy attacks and defenses in the pipeline of cloud-based DNN service, i.e., data manipulation, training, and prediction. In particular, a new theory, called cloud-based ML privacy game, is extracted from the recently published literature to provide a deep understanding of state-of-the-art research. Finally, the challenges and future work are presented to help researchers to continue to push forward the competitions between privacy attackers and defenders.
Additive manufacturing (AM) is growing as fast as anyone can imagine, and it is now a multi-billion-dollar industry. AM becomes popular in a variety of sectors, such as automotive, aerospace, biomedical, and pharmaceutical, for producing parts/ compo nents/ subsystems. However, current AM technologies can face vast risks of security issues and privacy loss. For the security of AM process, many researchers are working on the defense mechanism to countermeasure such security concerns and finding efficient ways to eliminate those risks. Researchers have also been conducting experiments to establish a secure framework for the users privacy and security components. This survey consists of four sections. In the first section, we will explore the relevant limitations of additive manufacturing in terms of printing capability, security, and possible solutions. The second section will present different kinds of attacks on AM and their effects. The next part will analyze and discuss the mechanisms and frameworks for access control and authentication for AM devices. The final section examines the security issues in various industrial sectors and provides the observations on the security of the additive manufacturing process.
96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack ers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
Nowadays, the usage of smartphones and their applications have become rapidly increasing popular in peoples daily life. Over the last decade, availability of mobile money services such as mobile-payment systems and app markets have significantly incr eased due to the different forms of apps and connectivity provided by mobile devices such as 3G, 4G, GPRS, and Wi-Fi, etc. In the same trend, the number of vulnerabilities targeting these services and communication networks has raised as well. Therefore, smartphones have become ideal target devices for malicious programmers. With increasing the number of vulnerabilities and attacks, there has been a corresponding ascent of the security countermeasures presented by the researchers. Due to these reasons, security of the payment systems is one of the most important issues in mobile payment systems. In this survey, we aim to provide a comprehensive and structured overview of the research on security solutions for smartphone devices. This survey reviews the state of the art on security solutions, threats, and vulnerabilities during the period of 2011-2017, by focusing on software attacks, such those to smartphone applications. We outline some countermeasures aimed at protecting smartphones against these groups of attacks, based on the detection rules, data collections and operating systems, especially focusing on open source applications. With this categorization, we want to provide an easy understanding for users and researchers to improve their knowledge about the security and privacy of smartphones.
Anonymity networks are becoming increasingly popular in todays online world as more users attempt to safeguard their online privacy. Tor is currently the most popular anonymity network in use and provides anonymity to both users and services (hidden services). However, the anonymity provided by Tor is also being misused in various ways. Hosting illegal sites for selling drugs, hosting command and control servers for botnets, and distributing censored content are but a few such examples. As a result, various parties, including governments and law enforcement agencies, are interested in attacks that assist in de-anonymising the Tor network, disrupting its operations, and bypassing its censorship circumvention mechanisms. In this paper, we survey known Tor attacks and identify currently available techniques that lead to improved de-anonymisation of users and hidden services.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا