ﻻ يوجد ملخص باللغة العربية
Learning latent representations of registered meshes is useful for many 3D tasks. Techniques have recently shifted to neural mesh autoencoders. Although they demonstrate higher precision than traditional methods, they remain unable to capture fine-grained deformations. Furthermore, these methods can only be applied to a template-specific surface mesh, and is not applicable to more general meshes, like tetrahedrons and non-manifold meshes. While more general graph convolution methods can be employed, they lack performance in reconstruction precision and require higher memory usage. In this paper, we propose a non-template-specific fully convolutional mesh autoencoder for arbitrary registered mesh data. It is enabled by our novel convolution and (un)pooling operators learned with globally shared weights and locally varying coefficients which can efficiently capture the spatially varying contents presented by irregular mesh connections. Our model outperforms state-of-the-art methods on reconstruction accuracy. In addition, the latent codes of our network are fully localized thanks to the fully convolutional structure, and thus have much higher interpolation capability than many traditional 3D mesh generation models.
As deep neural networks are increasingly used in applications suited for low-power devices, a fundamental dilemma becomes apparent: the trend is to grow models to absorb increasing data that gives rise to memory intensive; however low-power devices a
This paper addresses mesh restoration problems, i.e., denoising and completion, by learning self-similarity in an unsupervised manner. For this purpose, the proposed method, which we refer to as Deep Mesh Prior, uses a graph convolutional network on
Single-image-based view generation (SIVG) is important for producing 3D stereoscopic content. Here, handling different spatial resolutions as input and optimizing both reconstruction accuracy and processing speed is desirable. Latest approaches are b
In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned en
In this work, we propose a novel convolutional autoencoder based architecture to generate subspace specific feature representations that are best suited for classification task. The class-specific data is assumed to lie in low dimensional linear subs