ﻻ يوجد ملخص باللغة العربية
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM), and its local kernel variants, to approximate second-order differential operators defined on smooth manifolds with boundaries that naturally arise in elliptic PDE models. To achieve this goal, we introduce the Ghost Point Diffusion Maps (GPDM) estimator on an extended manifold, identified by the set of point clouds on the unknown original manifold together with a set of ghost points, specified along the estimated tangential direction at the sampled points at the boundary. The resulting GPDM estimator restricts the standard DM matrix to a set of extrapolation equations that estimates the function values at the ghost points. This adjustment is analogous to the classical ghost point method in finite-difference scheme for solving PDEs on flat domain. As opposed to the classical DM which diverges near the boundary, the proposed GPDM estimator converges pointwise even near the boundary. Applying the consistent GPDM estimator to solve the well-posed elliptic PDEs with classical boundary conditions (Dirichlet, Neumann, and Robin), we establish the convergence of the approximate solution under appropriate smoothness assumptions. We numerically validate the proposed mesh-free PDE solver on various problems defined on simple sub-manifolds embedded in Euclidean spaces as well as on an unknown manifold. Numerically, we also found that the GPDM is more accurate compared to DM in solving elliptic eigenvalue problems on bounded smooth manifolds.
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted
This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a superv
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea
Recent works have shown that deep neural networks can be employed to solve partial differential equations, giving rise to the framework of physics informed neural networks. We introduce a generalization for these methods that manifests as a scaling p
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{rm div}(a abla u)=f$ where $a=exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polyno