ﻻ يوجد ملخص باللغة العربية
Recent advances in numerical relativity have revealed how marginally trapped surfaces behave when black holes merge. It is now known that interesting topological features emerge during the merger, and marginally trapped surfaces can have self-intersections. This paper presents the most detailed study yet of the physical and geometric aspects of this scenario. For the case of a head-on collision of non-spinning black holes, we study in detail the world tube formed by the evolution of marginally trapped surfaces. In the first of this two-part study, we focus on geometrical properties of the dynamical horizons, i.e. the world tube traced out by the time evolution of marginally outer trapped surfaces. We show that even the simple case of a head-on collision of non-spinning black holes contains a rich variety of geometric and topological properties and is generally more complex than considered previously in the literature. The dynamical horizons are shown to have mixed signature and are not future marginally trapped everywhere. We analyze the area increase of the marginal surfaces along a sequence which connects the two initially disjoint horizons with the final common horizon. While the area does increase overall along this sequence, it is not monotonic. We find short durations of anomalous area change which, given the connection of area with entropy, might have interesting physical consequences. We investigate the possible reasons for this effect and show that it is consistent with existing proofs of the area increase law.
We study in detail the dynamics and stability of marginally trapped surfaces during a binary black hole merger. This is the second in a two-part study. The first part studied the basic geometric aspects of the world tubes traced out by the marginal s
In this second part of a two-part paper, we discuss numerical simulations of a head-on merger of two non-spinning black holes. We resolve the fate of the original two apparent horizons by showing that after intersecting, their world tubes turn around
The understanding of strong-field dynamics near black-hole horizons is a long-standing and challenging prob- lem in general relativity. Recent advances in numerical relativity and in the geometric characterization of black- hole horizons open new ave
In classical numerical relativity, marginally outer trapped surfaces (MOTSs) are the main tool to locate and characterize black holes. For five decades it has been known that during a binary merger, a new outer horizon forms around the initial appare
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equil