ﻻ يوجد ملخص باللغة العربية
Tunneling in a many-body system appears as one of the novel implications of quantum physics, in which particles move in space under an otherwise classically-forbidden potential barrier. Here, we theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic clouds in a closed system of a two-dimensional symmetric double-well potential. We examine how the inclusion of the transverse direction, orthogonal to the junction of the double-well, can intervene in the tunneling dynamics of bosonic clouds. We use a well-known many-body numerical method, called the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. MCTDHB allows one to obtain accurately the time-dependent many-particle wavefunction of the bosons which in principle entails all the information of interest about the system under investigation. We analyze the tunneling dynamics by preparing the initial state of the bosonic clouds in the left well of the double-well either as the ground, longitudinally or transversely excited, or a vortex state. We unravel the detailed mechanism of the tunneling process by analyzing the evolution in time of the survival probability, depletion and fragmentation, and the many-particle position, momentum, and angular-momentum expectation values and their variances. As a general rule, all objects lose coherence while tunneling through the barrier and the states which include transverse excitations do so faster. Implications are briefly discussed.
We investigate an atomic ensemble of interacting bosons trapped in a symmetric double well potential in contact with a single tightly trapped ion which has been recently proposed [R. Gerritsma et al., Phys. Rev. Lett. 109, 080402 (2012)] as a source
We unravel the out-of-equilibrium quantum dynamics of a few interacting bosonic clouds in a two-dimensional asymmetric double-well potential at the resonant tunneling scenario. At the single-particle level of resonant tunneling, particles tunnel unde
The out-of-equilibrium quantum dynamics of an interacting Bose gas trapped in a 1D asymmetric double-well potential is studied by solving the many-body Schrodinger equation numerically accurately. We examine how the loss of symmetry of the confining
The out-of-equilibrium quantum dynamics of a bosonic Josephson junction (BJJ) with long-range interaction is studied in real space by solving the time-dependent many-body Schrodinger equation numerically accurately using the multiconfigurational time
We revisit the dynamics of a Bose-Einstein condensate in a double-well potential, from the regime of Josephson plasma oscillations to the self-trapping regime, by means of the Bogoliubov quasiparticle projection method. For very small imbalance betwe