ﻻ يوجد ملخص باللغة العربية
Nonadiabatic geometric phases are only dependent on the evolution path of a quantum system but independent of the evolution details, and therefore quantum computation based on nonadiabatic geometric phases is robust against control errors. To realize nonadiabatic geometric quantum computation, it is necessary to ensure that the quantum system undergoes a cyclic evolution and the dynamical phases are removed from the total phases. To satisfy these conditions, the evolution paths in previous schemes are usually restricted to some special forms, e.g, orange-slice-shaped loops, which make the paths unnecessarily long in general. In this paper, we put forward an approach to the realization of nonadiabatic geometric quantum computation by which a universal set of nonadiabatic geometric gates can be realized with any desired evolution paths. Our approach makes it possible to realize geometric quantum computation with an economical evolution time so the influence of environment noises on the quantum gates can be minimized further.
Geometric phases are robust against certain types of local noises, and thus provide a promising way towards high-fidelity quantum gates. However, comparing with the dynamical ones, previous implementations of nonadiabatic geometric quantum gates usua
For circuit-based quantum computation, experimental implementation of universal set of quantum logic gates with high-fidelity and strong robustness is essential and central. Quantum gates induced by geometric phases, which depend only on global prope
Previous schemes of nonadiabatic holonomic quantum computation were focused mainly on realizing a universal set of elementary gates. Multiqubit controlled gates could be built by decomposing them into a series of the universal gates. In this article,
High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefo
We review a time-dependent version of the Schrieffer-Wolff transformation that accounts for real-time control of system parameters, soon to be rendered possible on a broad basis due to technical progress. The dispersive regime of $N$ multilevel syste