ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations

167   0   0.0 ( 0 )
 نشر من قبل Andreas Bauswein
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possible occurrence of the hadron-quark phase transition (PT) during the merging of neutron star binaries by hydrodynamical simulations employing a set of temperature dependent hybrid equations of state (EoSs). Following previous work we describe an unambiguous and measurable signature of deconfined quark matter in the gravitational-wave (GW) signal of neutron star binary mergers including equal-mass and unequal-mass systems of different total binary mass. The softening of the EoS by the PT at higher densities, i.e. after merging, leads to a characteristic increase of the dominant postmerger GW frequency f_peak relative to the tidal deformability Lambda inferred during the premerger inspiral phase. Hence, measuring such an increase of the postmerger frequency provides evidence for the presence of a strong PT. If the postmerger frequency and the tidal deformability are compatible with results from purely baryonic EoS models yielding very tight relations between f_peak and Lambda, a strong PT can be excluded up to a certain density. We find tight correlations of f_peak and Lambda with the maximum density during the early postmerger remnant evolution. These GW observables thus inform about the density regime which is probed by the remnant and its GW emission. Exploiting such relations we devise a directly applicable, concrete procedure to constrain the onset density of the QCD PT from future GW measurements. We point out two interesting scenarios: if no indications for a PT are inferred from a GW detection, our procedure yields a lower limit on the onset density of the hadron quark PT. On the contrary, if a merger event reveals evidence for the occurrence of deconfined quark matter, the inferred GW parameters set an upper limit on the PT onset density. (abridged)



قيم البحث

اقرأ أيضاً

Hadronic matter undergoes a deconfinement transition to quark matter at high temperature and/or high density. It would be realized in collapsing cores of massive stars. In the framework of MIT bag model, the ambiguities of the interaction are encapsu lated in the bag constant. Some progenitor stars that invoke the core collapses explode as supernovae, and other ones become black holes. The fates of core collapses are investigated for various cases. Equations of state including the hadron-quark phase transition are constructed for the cases of the bag constant B=90, 150 and 250 MeV fm^{-3}. To describe the mixed phase, the Gibbs condition is used. Adopting the equations of state with different bag constants, the core collapse simulations are performed for the progenitor models with 15 and 40Msolar. If the bag constant is small as B=90 MeV fm^{-3}, an interval between the bounce and black hole formation is shortened drastically for the model with 40Msolar and the second bounce revives the shock wave leading to explosion for the model with 15Msolar.
361 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black-hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several Mpcs with advanced detectors and up to hundreds of Mpcs with third generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star. The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates towards the protoneutron star surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the protoneutron star where the vp-process might occur.
We describe a multi-messenger interpretation of GW170817, which yields a robust lower limit on NS radii. This excludes NSs with radii smaller than about 10.7 km and thus rules out very soft nuclear matter. We stress the potential of this type of cons traints when future detections become available. A very similar argumentation may yield an upper bound on the maximum mass of nonrotating NSs. We also discuss simulations of NS mergers, which undergo a first-order phase transition to quark matter. We point out a different dynamical behavior. Considering the gravitational-wave signal, we identify an unambiguous signature of the QCD phase transition in NS mergers. The occurrence of quark matter through a strong first-order phase transition during merging leads to a characteristic shift of the dominant postmerger frequency. The frequency shift is indicative for a phase transition if it is compared to the postmerger frequency which is expected for purely hadronic EoS models. A very strong deviation of several 100 Hz is observed for hybrid EoSs in an otherwise tight relation between the tidal deformability and the postmerger frequency. We address the potential impact of a first-order phase transition on the electromagnetic counterpart of NS mergers. Our simulations suggest that there would be no significant qualitative differences between a system undergoing a phase transition to quark matter and purely hadronic mergers. The quantitative differences are within the spread which is found between different hadronic EoS models. This implies on the one hand that GW170817 is compatible with a possible transition to quark matter. On the other hand these considerations show that it may not be easy to identify quantitative differences between purely hadronic mergers and events in which quark matter occurs considering solely their electromagnetic counterpart or their nucleosynthesis products. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا