ﻻ يوجد ملخص باللغة العربية
In recent years, many clever realizations of Majorana fermions in condensed matter have been predicted -- and some largely verified -- by exploiting the interplay between superconductivity and band topology in metals and insulators. However, realizations in semimetals remain less explored. We ask, under what conditions do superconductor vortices in time-reversal symmetric Weyl semimetals trap Majorana fermions on the surface? If each constant-$k_{z}$ plane, where $z$ is the vortex axis, contains equal numbers of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invariant $ u$ in terms of the Fermi arc structure that signals the presence or absence of surface Majorana fermions. In contrast, if certain constant-$k_{z}$ planes contain a net chirality of Weyl nodes, the vortex is gapless. We analytically calculate $ u$ within a perturbative scheme and provide numerical support with an orthorhombic lattice model. Using our criteria, we predict phase transitions between trivial, critical and topological vortices by simply tilting the vortex, and propose Li(Fe$_{0.91}$Co$_{0.09}$)As with broken inversion symmetry as a candidate for realizing our proposals.
Fermi arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample boundary provide a natural solu
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio
In the presence of certain symmetries, three-dimensional Dirac semimetals can harbor not only surface Fermi arcs, but also surface Dirac cones. Motivated by the experimental observation of rotation-symmetry-protected Dirac semimetal states in iron-ba
We show that long-ranged superconducting order is not necessary to guarantee the existence of Majorana fermion zero modes at the ends of a quantum wire. We formulate a concrete model which applies, for instance, to a semiconducting quantum wire with