ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial Intelligence-based Clinical Decision Support for COVID-19 -- Where Art Thou?

74   0   0.0 ( 0 )
 نشر من قبل Mathias Unberath
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The COVID-19 crisis has brought about new clinical questions, new workflows, and accelerated distributed healthcare needs. While artificial intelligence (AI)-based clinical decision support seemed to have matured, the application of AI-based tools for COVID-19 has been limited to date. In this perspective piece, we identify opportunities and requirements for AI-based clinical decision support systems and highlight challenges that impact AI readiness for rapidly emergent healthcare challenges.



قيم البحث

اقرأ أيضاً

Artificial Intelligence (AI) has already made a huge impact on our current technological trends. Through AI developments, machines are now given power and intelligence to behave and work like human mind. In this research project, we propose and imple ment an AI based health physician system that would be able to interact with the patient, do the diagnosis and suggest quick remedy or treatment of their problem. A decision tree algorithm is implemented in order to follow a top down searching approach to identify and diagnose the problem and suggest a possible solution. The system uses a questionnaire based approach to query the user (patient) about various Symptoms, based on which a decision is made and a medicine is recommended
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with A I systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.
Assessing risk for voluminous legal documents such as request for proposal; contracts is tedious and error prone. We have developed risk-o-meter, a framework, based on machine learning and natural language processing to review and assess risks of any legal document. Our framework uses Paragraph Vector, an unsupervised model to generate vector representation of text. This enables the framework to learn contextual relations of legal terms and generate sensible context aware embedding. The framework then feeds the vector space into a supervised classification algorithm to predict whether a paragraph belongs to a per-defined risk category or not. The framework thus extracts risk prone paragraphs. This technique efficiently overcomes the limitations of keyword-based search. We have achieved an accuracy of 91% for the risk category having the largest training dataset. This framework will help organizations optimize effort to identify risk from large document base with minimal human intervention and thus will help to have risk mitigated sustainable growth. Its machine learning capability makes it scalable to uncover relevant information from any type of document apart from legal documents, provided the library is per-populated and rich.
The Internet of Things (IoT) and edge computing applications aim to support a variety of societal needs, including the global pandemic situation that the entire world is currently experiencing and responses to natural disasters. The need for real-t ime interactive applications such as immersive video conferencing, augmented/virtual reality, and autonomous vehicles, in education, healthcare, disaster recovery and other domains, has never been higher. At the same time, there have been recent technological breakthroughs in highly relevant fields such as artificial intelligence (AI)/machine learning (ML), advanced communication systems (5G and beyond), privacy-preserving computations, and hardware accelerators. 5G mobile communication networks increase communication capacity, reduce transmission latency and error, and save energy -- capabilities that are essential for new applications. The envisioned future 6G technology will integrate many more technologies, including for example visible light communication, to support groundbreaking applications, such as holographic communications and high precision manufacturing. Many of these applications require computations and analytics close to application end-points: that is, at the edge of the network, rather than in a centralized cloud. AI techniques applied at the edge have tremendous potential both to power new applications and to need more efficient operation of edge infrastructure. However, it is critical to understand where to deploy AI systems within complex ecosystems consisting of advanced applications and the specific real-time requirements towards AI systems.
The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019. The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives. At the time of writing this article, the numbers of infected cases and deaths still increase significantly and have no sign of a well-controlled situation, e.g., as of 13 July 2020, from a total number of around 13.1 million positive cases, 571, 527 deaths were reported in the world. Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak and preventing the severe effects of the COVID-19 pandemic. We firstly present an overview of AI and big data, then identify the applications aimed at fighting against COVID-19, next highlight challenges and issues associated with state-of-the-art solutions, and finally come up with recommendations for the communications to effectively control the COVID-19 situation. It is expected that this paper provides researchers and communities with new insights into the ways AI and big data improve the COVID-19 situation, and drives further studies in stopping the COVID-19 outbreak.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا