ﻻ يوجد ملخص باللغة العربية
We have analyzed new CO($J$ = 1-0) data in the region of a reflection nebula NGC 2023 with a particular focus on the detailed kinematical properties of the molecular gas. The results show that there are two velocity components which indicate signatures of dynamical interaction revealed at a high resolution of 19$$ (= 0.04 pc). Based on the results we propose a hypothesis that two clouds collided with each other and triggered the formation of the B1.5 star HD 37903 in addition to 20 lower mass stars in two small clusters with a size of 2 pc. Although the previous study favored a scheme of triggering by the HII region (e.g., Mookerjea et al. 2009), the present results show that the effect of the HII region is limited only to the surface of the molecular cloud, and does not contribute to the gas compression and star formation. The present results lend support for the dominant role of cloud-cloud collision in forming high mass stars in addition to $sim$20 lower mass stars, which are also likely formed by the collision. The present case suggests all the high mass stars in the Orion region are formed by cloud-cloud collision.
We present $^{12}$CO $J=$1--0, $^{13}$CO $J=$1--0 and C$^{18}$O $J=$1--0 images of the M17 giant molecular clouds obtained as part of FUGIN (FOREST Ultra-wide Galactic Plane Survey InNobeyama) project. The observations cover the entire area of M17 SW
NGC 2359 is an HII region located in the outer Galaxy that contains the isolated Wolf-Rayet (WR) star HD 56925. We present millimeter/submillimeter observations of $^{12}$CO($J$ = 1-0, 3-2) line emission toward the entire nebula. We identified that t
We carried out new CO ($J=$1-0, 2-1 and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s$^{-1}$ velocity separation, which is co
M16, the Eagle Nebula, is an outstanding HII region which exhibits extensive high-mass star formation and hosts remarkable pillars. We herein obtained new $^{12}$CO $J=$1-0 data for the region observed with NANTEN2, which were combined with the $^{1
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associate