ﻻ يوجد ملخص باللغة العربية
The study of the ultra-high energy cosmic rays, neutrinos and gamma rays is one of the most important challenges in astrophysics. The low fluxes of these particles do not allow one to detect them directly. The detection is performed by the measuring of the air-showers produced by the primary particles in the Earths atmosphere. A radio detection of ultra-high energy air-showers is a cost-effective technique that provides a precise reconstruction of the parameters of primary particle and almost full duty cycle in comparison with other methods. The main challenge of the modern radio detectors is the development of efficient self-trigger technology, resistant to high-level background and radio frequency interference. Most of the modern radio detectors receive trigger generated by either particle or optical detectors. The development of the self trigger for the radio detector will significantly simplify the operation of existing instruments and allow one to access the main advantages of the radio method as well as open the way to the construction of the next generation of large-scale radio detectors. In the present work we discuss our progress in the solution of this problem, particularly the classification of broadband pulses.
Air-shower radio arrays operate in low signal-to-noise ratio conditions, which complicates the autonomous measurement of air-shower signals without using an external trigger from optical or scintillator detectors. A simple threshold trigger for radio
A successful ground array Radio Frequency (RF)-only self-trigger on 10 high-energy cosmic ray events is demonstrated with 256 dual-polarization antennas of the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). This RF-only capability i
Relativistic, charged particles present in extensive air showers lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong el
We introduce a new Monte Carlo template-based reconstruction method for air shower arrays, with a focus on shower core and energy reconstruction of $gamma$-ray induced air showers. The algorithm fits an observed lateral amplitude distribution of an e
Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambit