ﻻ يوجد ملخص باللغة العربية
Using the latest upper limits on the 21-cm power spectrum at $zapprox9.1$ from the Low Frequency Array (LOFAR), we explore regions of parameter space which are inconsistent with the data. We use 21CMMC, a Monte Carlo Markov Chain sampler of 21cmFAST which directly forward models the 3D cosmic 21-cm signal in a fully Bayesian framework. We use the astrophysical parameterisation from 21cmFAST, which includes mass-dependent star formation rates and ionising escape fractions as well as soft-band X-ray luminosities to place limits on the properties of the high-$z$ galaxies. Further, we connect the disfavoured regions of parameter space with existing observational constraints on the Epoch of Reionisation such as ultra-violet (UV) luminosity functions, background UV photoionisation rate, intergalactic medium (IGM) neutral fraction and the electron scattering optical depth. We find that all models exceeding the 21-cm signal limits set by LOFAR at $zapprox9.1$ are excluded at $gtrsim2sigma$ by other probes. Finally, we place limits on the IGM spin temperature from LOFAR, disfavouring at 95 per cent confidence spin temperatures below $sim2.6$ K across an IGM neutral fraction range of $0.15 lesssim bar{x}_{H{scriptscriptstyle I}} lesssim 0.6$. Note, these limits are only obtained from 141 hrs of data in a single redshift bin. With tighter upper limits, across multiple redshift bins expected in the near future from LOFAR, more viable models will be ruled out. Our approach demonstrates the potential of forward modelling tools such as 21CMMC in combining 21-cm observations with other high-$z$ probes to constrain the astrophysics of galaxies.
A new upper limit on the 21-cm signal power spectrum at a redshift of $z approx 9.1$ is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-cali
We present upper limits on the 21 cm power spectrum at $z = 5.9$ calculated from the model-independent limit on the neutral fraction of the intergalactic medium of $x_{rm H{small I }} < 0.06 + 0.05 (1sigma)$ derived from dark pixel statistics of quas
The ARCADE2 and LWA1 experiments have claimed an excess over the Cosmic Microwave Background (CMB) at low radio frequencies. If the cosmological high-redshift contribution to this radio background is between 0.1% and 22% of the CMB at 1.42 GHz, it co
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the
We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the und