ﻻ يوجد ملخص باللغة العربية
We report resistance and elastoresistance measurements on (Ba$_{0.5}$K$_{0.5}$)Fe$_2$As$_2$, CaKFe$_4$As$_4$, and KCa$_2$Fe$_4$As$_4$F$_2$. The Fe-site symmetry is $D_{2d}$ in the first compound but $C_{2v}$ in the latter two, which lifts the degeneracy of the Fe $d_{xz}$ and $d_{yz}$ orbitals. The temperature dependence of the resistance and elastoresistance is similar between the three compounds. Especially, the [110] elastoresistance is enhanced with decreasing temperature irrespective of the Fe-site symmetry. This appears to be in conflict with recent Raman scattering studies on CaKFe$_4$As$_4$, which suggest the absence of nematic fluctuations. We consider possible ways of reconciliation and suggest that the present result is important in elucidating the origin of in-plane resistivity anisotropy in iron-based superconductors.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature
Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-FeAs-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting tra
We present a systematic study of electrical resistivity, Hall coefficient, magneto-optical imaging, magnetization, and STEM analyses of KCa${_2}$Fe${_4}$As${_4}$F${_2}$ single crystals. Sharp diamagnetic transition and magneto-optical imaging reveal
CsCa$_2$Fe$_4$As$_4$F$_2$ is a newly discovered iron-based superconductor with $T_mathrm{c}sim$ 30 K containing double Fe$_2$As$_2$ layers that are separated by insulating Ca$_2$F$_2$ spacer layers. Here we report the transport and magnetization meas