ﻻ يوجد ملخص باللغة العربية
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by utilizing the extended hypercircle method along with the Scott-Vogelius finite element scheme. Since all terms in the error estimation have explicit values, by further applying the interval arithmetic and verified computing algorithms, the computed results provide rigorous estimation for the approximation error. As an application of the proposed error estimation, the eigenvalue problem of the Stokes operator is considered and rigorous bounds for the eigenvalues are obtained. The efficiency of proposed error estimation is demonstrated by solving the Stokes equation on both convex and non-convex 3D domains.
Many practical problems occur due to the boundary value problem. This paper evaluates the finite element solution of the boundary value problem of Poissons equation and proposes a novel a posteriori local error estimation based on the Hypercircle met
Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standa
In this article, we aim to recover locally conservative and $H(div)$ conforming fluxes for the linear Cut Finite Element Solution with Nitsches method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in
The paper is concerned with the adaptive finite element solution of linear elliptic differential equations using equidistributing meshes. A strategy is developed for defining this type of mesh based on residual-based a posteriori error estimates and
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness