ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of MR Fingerprinting for Free-Breathing Quantitative Abdominal Imaging

304   0   0.0 ( 0 )
 نشر من قبل Max Van Riel
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose a free-breathing magnetic resonance fingerprinting method that can be used to obtain $B_1^+$-robust quantitative maps of the abdomen in a clinically acceptable time. A three-dimensional MR fingerprinting sequence with a radial stack-of-stars trajectory was implemented for quantitative abdominal imaging. The k-space acquisition ordering was adjusted to improve motion-robustness. The flip angle pattern was optimized using the Cramer-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900, and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated $T_1$ values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artefacts can appear in the quantitative maps, and confirmed that a motion-robust k-space ordering is essential in preventing these artefacts. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate $B_1^+$-robust quantitative maps of proton density, $T_1$, and $B_1^+$ under free-breathing conditions at a clinically usable resolution within 5 minutes.



قيم البحث

اقرأ أيضاً

Purpose: To improve image quality and accelerate the acquisition of 3D MRF. Methods: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low rank (LLR) constraint and a modified spiral-projection spatiot emporal encoding scheme termed tiny-golden-angle-shuffling (TGAS) were implemented for rapid whole-brain high-resolution quantitative mapping. The LLR regularization parameter and the number of subspace bases were tuned using retrospective in-vivo data and simulated examinations, respectively. B0 inhomogeneity correction using multi-frequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. Results: The proposed MRF acquisition and reconstruction framework can produce provide high quality 1-mm isotropic whole-brain quantitative maps in a total acquisition time of 1 minute 55 seconds, with higher-quality results than ones obtained from the previous approach in 6 minutes. The comparison of quantitative results indicates that neither the subspace reconstruction nor the TGAS trajectory induce bias for T1 and T2 mapping. High quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 minutes using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. Conclusion: The proposed TGAS-SPI-MRF with optimized spiral-projection trajectory and subspace reconstruction can enable high-resolution quantitative mapping with faster acquisition speed.
Purpose: Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules and ihMT appears to be specific to myelinated tiss ue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios, and quantitative parameter maps. Theory and Methods: Building upon previous work that uses multiband radiofrequency (RF) pulses to efficiently generate ihMT contrast, we propose a cyclic-steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of a magnetic resonance fingerprinting (MRF) acquisition, except that the signal fluctuations are entirely mediated by magnetization transfer effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio (MTR) and ihMT ratio (ihMTR) maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. Results: Phantom and in vivo brain data acquired at 1.5T demonstrate the expected contrast trends, with ihMTR maps showing contrast more specific to white matter (WM), as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. Conclusions: By cycling between multiband and single-band pulses, an entirely magnetization transfer mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular specific tissue parameters.
Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However , the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton density, T1 and T2 in general). Inspired by diffusion-weighted SSFP imaging, we present a proof-of-concept of a novel MRF sequence with embedded diffusion-encoding gradients along all three axes to efficiently encode orientational diffusion and T1 and T2 relaxation. We take advantage of a convolutional neural network (CNN) to reconstruct multiple quantitative maps from this single, highly undersampled acquisition. We bypass expensive dictionary matching by learning the implicit physical relationships between the spatiotemporal MRF data and the T1, T2 and diffusion tensor parameters. The predicted parameter maps and the derived scalar diffusion metrics agree well with state-of-the-art reference protocols. Orientational diffusion information is captured as seen from the estimated primary diffusion directions. In addition to this, the joint acquisition and reconstruction framework proves capable of preserving tissue abnormalities in multiple sclerosis lesions.
Purpose: To develop a clinical chemical exchange saturation transfer magnetic resonance fingerprinting (CEST-MRF) pulse sequence and reconstruction method. Methods: The CEST-MRF pulse sequence was modified to conform to hardware limits on clinical scanners while keeping scan time $leqslant$ 2 minutes. The measured data was reconstructed using a deep reconstruction network (DRONE) to yield the water relaxation and chemical exchange parameters. The feasibility of the 6 parameter DRONE reconstruction was tested in simulations in a digital brain phantom. A healthy subject was scanned with the CEST-MRF sequence and a conventional MRF sequence for comparison. The reproducibility was assessed via test-retest experiments and the concordance correlation coefficient (CCC) calculated for white matter (WM) and grey matter (GM). The clinical utility of CEST-MRF was demonstrated in a brain metastasis patient in comparison to standard clinical imaging sequences. The tumor was segmented into edema, solid core and necrotic core regions and the CEST-MRF values compared to the contra-lateral side. Results: The 6 parameter DRONE reconstruction of the digital phantom yielded a mean absolute error of $leqslant$ 6% for all parameters. The CEST-MRF parameters were in good agreement with those from a conventional MRF sequence and previous studies in the literature. The mean CCC for all 6 parameters was 0.79$pm$0.02 in WM and 0.63$pm$0.03 in GM. The CEST-MRF values in nearly all tumor regions were significantly different (p=0.001) from each other and the contra-lateral side. Conclusion: The clinical CEST-MRF sequence provides a method for fast simultaneous quantification of multiple tissue parameters in pathologies.
The susceptibility-based positive contrast MR technique was applied to estimate arbitrary magnetic susceptibility distributions of the metallic devices using a kernel deconvolution algorithm with a regularized L-1 minimization.Previously, the first-o rder primal-dual (PD) algorithm could provide a faster reconstruction time to solve the L-1 minimization, compared with other methods. Here, we propose to accelerate the PD algorithm of the positive contrast image using the multi-core multi-thread feature of graphics processor units (GPUs). The some experimental results showed that the GPU-based PD algorithm could achieve comparable accuracy of the metallic interventional devices in positive contrast imaging with less computational time. And the GPU-based PD approach was 4~15 times faster than the previous CPU-based scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا