ﻻ يوجد ملخص باللغة العربية
The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands, and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better performing superconducting devices.
Chains of magnetic atoms placed on the surface of an s-wave superconductor with large spin-orbit coupling provide a promising platform for the realization of topological superconducting states characterized by the presence of Majorana zero-energy mod
We study a chain of magnetic moments exchange coupled to a conventional three dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable
Superconductor-Ferromagnet (SF) heterostructures are of interest due to numerous phenomena related to the spin-dependent interaction of Cooper pairs with the magnetization. Here we address the effects of a magnetic insulator on the density of states
Magnetic atoms on superconductors induce localized Yu-Shiba-Rusinov (YSR) bound states. The proposal that topological superconductivity and Majorana modes can be engineered in arrays of hybridizing YSR states has led to their intense investigation. H
There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features