ترغب بنشر مسار تعليمي؟ اضغط هنا

GAN-Based Facial Attractiveness Enhancement

131   0   0.0 ( 0 )
 نشر من قبل Yuhongze Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a generative framework based on generative adversarial network (GAN) to enhance facial attractiveness while preserving facial identity and high-fidelity. Given a portrait image as input, having applied gradient descent to recover a latent vector that this generative framework can use to synthesize an image resemble to the input image, beauty semantic editing manipulation on the corresponding recovered latent vector based on InterFaceGAN enables this framework to achieve facial image beautification. This paper compared our system with Beholder-GAN and our proposed result-enhanced version of Beholder-GAN. It turns out that our framework obtained state-of-art attractiveness enhancement results. The code is available at https://github.com/zoezhou1999/BeautifyBasedOnGAN.



قيم البحث

اقرأ أيضاً

118 - Ke Zhang , Yukun Su , Xiwang Guo 2020
Facial attribute editing has mainly two objectives: 1) translating image from a source domain to a target one, and 2) only changing the facial regions related to a target attribute and preserving the attribute-excluding details. In this work, we prop ose a Multi-attention U-Net-based Generative Adversarial Network (MU-GAN). First, we replace a classic convolutional encoder-decoder with a symmetric U-Net-like structure in a generator, and then apply an additive attention mechanism to build attention-based U-Net connections for adaptively transferring encoder representations to complement a decoder with attribute-excluding detail and enhance attribute editing ability. Second, a self-attention mechanism is incorporated into convolutional layers for modeling long-range and multi-level dependencies across image regions. experimental results indicate that our method is capable of balancing attribute editing ability and details preservation ability, and can decouple the correlation among attributes. It outperforms the state-of-the-art methods in terms of attribute manipulation accuracy and image quality.
The origin and meaning of facial beauty represent a longstanding puzzle. Despite the profuse literature devoted to facial attractiveness, its very nature, its determinants and the nature of inter-person differences remain controversial issues. Here w e tackle such questions proposing a novel experimental approach in which human subjects, instead of rating natural faces, are allowed to efficiently explore the face-space and sculpt their favorite variation of a reference facial image. The results reveal that different subjects prefer distinguishable regions of the face-space, highlighting the essential subjectivity of the phenomenon.The different sculpted facial vectors exhibit strong correlations among pairs of facial distances, characterising the underlying universality and complexity of the cognitive processes, and the relative relevance and robustness of the different facial distances.
The perception of facial beauty is a complex phenomenon depending on many, detailed and global facial features influencing each other. In the machine learning community this problem is typically tackled as a problem of supervised inference. However, it has been conjectured that this approach does not capture the complexity of the phenomenon. A recent original experiment (Iba~nez-Berganza et al., Scientific Reports 9, 8364, 2019) allowed different human subjects to navigate the face-space and ``sculpt their preferred modification of a reference facial portrait. Here we present an unsupervised inference study of the set of sculpted facial vectors in that experiment. We first infer minimal, interpretable, and faithful probabilistic models (through Maximum Entropy and artificial neural networks) of the preferred facial variations, that capture the origin of the observed inter-subject diversity in the sculpted faces. The application of such generative models to the supervised classification of the gender of the sculpting subjects, reveals an astonishingly high prediction accuracy. This result suggests that much relevant information regarding the subjects may influence (and be elicited from) her/his facial preference criteria, in agreement with the multiple motive theory of attractiveness proposed in previous works.
Facial attributes (e.g., age and attractiveness) estimation performance has been greatly improved by using convolutional neural networks. However, existing methods have an inconsistency between the training objectives and the evaluation metric, so th ey may be suboptimal. In addition, these methods always adopt image classification or face recognition models with a large amount of parameters, which carry expensive computation cost and storage overhead. In this paper, we firstly analyze the essential relationship between two state-of-the-art methods (Ranking-CNN and DLDL) and show that the Ranking method is in fact learning label distribution implicitly. This result thus firstly unifies two existing popular state-of-the-art methods into the DLDL framework. Second, in order to alleviate the inconsistency and reduce resource consumption, we design a lightweight network architecture and propose a unified framework which can jointly learn facial attribute distribution and regress attribute value. The effectiveness of our approach has been demonstrated on both facial age and attractiveness estimation tasks. Our method achieves new state-of-the-art results using the single model with 36$times$(6$times$) fewer parameters and 2.6$times$(2.1$times$) faster inference speed on facial age (attractiveness) estimation. Moreover, our method can achieve comparable results as the state-of-the-art even though the number of parameters is further reduced to 0.9M (3.8MB disk storage).
The state-of-the-art facial image inpainting methods achieved promising results but face realism preservation remains a challenge. This is due to limitations such as; failures in preserving edges and blurry artefacts. To overcome these limitations, w e propose a Symmetric Skip Connection Wasserstein Generative Adversarial Network (S-WGAN) for high-resolution facial image inpainting. The architecture is an encoder-decoder with convolutional blocks, linked by skip connections. The encoder is a feature extractor that captures data abstractions of an input image to learn an end-to-end mapping from an input (binary masked image) to the ground-truth. The decoder uses learned abstractions to reconstruct the image. With skip connections, S-WGAN transfers image details to the decoder. Additionally, we propose a Wasserstein-Perceptual loss function to preserve colour and maintain realism on a reconstructed image. We evaluate our method and the state-of-the-art methods on CelebA-HQ dataset. Our results show S-WGAN produces sharper and more realistic images when visually compared with other methods. The quantitative measures show our proposed S-WGAN achieves the best Structure Similarity Index Measure (SSIM) of 0.94.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا