ﻻ يوجد ملخص باللغة العربية
We consider the problem of model selection for two popular stochastic linear bandit settings, and propose algorithms that adapts to the unknown problem complexity. In the first setting, we consider the $K$ armed mixture bandits, where the mean reward of arm $i in [K]$, is $mu_i+ langle alpha_{i,t},theta^* rangle $, with $alpha_{i,t} in mathbb{R}^d$ being the known context vector and $mu_i in [-1,1]$ and $theta^*$ are unknown parameters. We define $|theta^*|$ as the problem complexity and consider a sequence of nested hypothesis classes, each positing a different upper bound on $|theta^*|$. Exploiting this, we propose Adaptive Linear Bandit (ALB), a novel phase based algorithm that adapts to the true problem complexity, $|theta^*|$. We show that ALB achieves regret scaling of $O(|theta^*|sqrt{T})$, where $|theta^*|$ is apriori unknown. As a corollary, when $theta^*=0$, ALB recovers the minimax regret for the simple bandit algorithm without such knowledge of $theta^*$. ALB is the first algorithm that uses parameter norm as model section criteria for linear bandits. Prior state of art algorithms cite{osom} achieve a regret of $O(Lsqrt{T})$, where $L$ is the upper bound on $|theta^*|$, fed as an input to the problem. In the second setting, we consider the standard linear bandit problem (with possibly an infinite number of arms) where the sparsity of $theta^*$, denoted by $d^* leq d$, is unknown to the algorithm. Defining $d^*$ as the problem complexity, we show that ALB achieves $O(d^*sqrt{T})$ regret, matching that of an oracle who knew the true sparsity level. This methodology is then extended to the case of finitely many arms and similar results are proven. This is the first algorithm that achieves such model selection guarantees. We further verify our results via synthetic and real-data experiments.
We study reward maximisation in a wide class of structured stochastic multi-armed bandit problems, where the mean rewards of arms satisfy some given structural constraints, e.g. linear, unimodal, sparse, etc. Our aim is to develop methods that are fl
Stochastic linear contextual bandit algorithms have substantial applications in practice, such as recommender systems, online advertising, clinical trials, etc. Recent works show that optimal bandit algorithms are vulnerable to adversarial attacks an
We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({ttfamily ACB}), that works in phases a
We consider the problem of minimizing regret in an $N$ agent heterogeneous stochastic linear bandits framework, where the agents (users) are similar but not all identical. We model user heterogeneity using two popularly used ideas in practice; (i) A
We propose the first fully-adaptive algorithm for pure exploration in linear bandits---the task to find the arm with the largest expected reward, which depends on an unknown parameter linearly. While existing methods partially or entirely fix sequenc