ﻻ يوجد ملخص باللغة العربية
We apply field-particle correlations -- a technique that tracks the time-averaged velocity-space structure of the energy density transfer rate between electromagnetic fields and plasma particles -- to data drawn from a hybrid Vlasov-Maxwell simulation of Alfven Ion-Cyclotron turbulence. Energy transfer in this system is expected to include both Landau and cyclotron wave-particle resonances, unlike previous systems to which the field-particle correlation technique has been applied. In this simulation, the energy transfer rate mediated by the parallel electric field $E_parallel$ comprises approximately $60%$ of the total rate, with the remainder mediated by the perpendicular electric field $E_perp$. The parallel electric field resonantly couples to protons, with the canonical bipolar velocity-space signature of Landau damping identified at many points throughout the simulation. The energy transfer mediated by $E_perp$ preferentially couples to particles with $v_{tp} lesssim v_perp lesssim 3 v_{tp}$ in agreement with the expected formation of a cyclotron diffusion plateau. Our results demonstrate clearly that the field-particle correlation technique can distinguish distinct channels of energy transfer using single-point measurements, even at points in which multiple channels act simultaneously, and can be used to determine quantitatively the rates of particle energization in each channel.
Turbulence is ubiquitously observed in nearly collisionless heliospheric plasmas, including the solar wind and corona and the Earths magnetosphere. Understanding the collisionless mechanisms responsible for the energy transfer from the turbulent fluc
A pair of nonlinear diffusion equations in Fourier space} is used to study the dynamics of strong Alfven-wave turbulence, from MHD to electron scales. Special attention is paid to the regime of imbalance between the energies of counter-propagating wa
An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associate
Results of the first validation of large guide field, $B_g / delta B_0 gg 1$, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant $beta_i = 0.01$ and solar wind relevant $beta_i = 1$ are presented, where $delta B_0$
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionle