ﻻ يوجد ملخص باللغة العربية
Anderson acceleration (AA) is a popular method for accelerating fixed-point iterations, but may suffer from instability and stagnation. We propose a globalization method for AA to improve stability and achieve unified global and local convergence. Unlike existing AA globalization approaches that rely on safeguarding operations and might hinder fast local convergence, we adopt a nonmonotone trust-region framework and introduce an adaptive quadratic regularization together with a tailored acceptance mechanism. We prove global convergence and show that our algorithm attains the same local convergence as AA under appropriate assumptions. The effectiveness of our method is demonstrated in several numerical experiments.
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progres
Based on an observation that additive Schwarz methods for general convex optimization can be interpreted as gradient methods, we propose an acceleration scheme for additive Schwarz methods. Adopting acceleration techniques developed for gradient meth
We prove non asymptotic linear convergence rates for the constrained Anderson acceleration extrapolation scheme. These guarantees come from new upper bounds on the constrained Chebyshev problem, which consists in minimizing the maximum absolute value
Many computer graphics problems require computing geometric shapes subject to certain constraints. This often results in non-linear and non-convex optimization problems with globally coupled variables, which pose great challenge for interactive appli
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that